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Abstract: Model-based statistical approaches were used to compare
the ability of the Alzheimer’s Disease Assessment Scale-cognitive
subscale (ADAS-cog), cerebrospinal fluid (CSF), fluorodeoxyglu-
cose positron emission tomography and volumetric magnetic
resonance imaging (MRI) markers to predict 12-month progression
from mild cognitive impairment (MCI) to Alzheimer disease (AD).
Using the Alzheimer’s Disease Neuroimaging Initiative (ADNI)
data set, properties of the 11-item ADAS-cog (ADAS.11), the
13-item ADAS-cog (ADAS.All) and novel composite scores were
compared, using weighting schemes derived from the Random
Forests (RF) tree-based multivariate model. Weighting subscores
using the RF model of ADAS.All enhanced discrimination between
elderly controls, MCI and AD patients. The ability of the RF-
weighted ADAS-cog composite and individual scores, along with
neuroimaging or biochemical biomarkers to predict MCI to AD
conversion over 12 months was also assessed. Although originally
optimized to discriminate across diagnostic categories, the ADAS.

All, weighted according to the RF model, did nearly as well or
better than individual or composite baseline neuroimaging or CSF
biomarkers in prediction of 12-month conversion from MCI to
AD. These suggest that a modified subscore weighting scheme
applied to the 13-item ADAS-cog is comparable to imaging or CSF
markers in prediction of conversion from MCI to AD at 12
months.
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There is burgeoning interest in the development of
therapeutics for prodromal Alzheimer disease (AD).

This is driven by the hypothesis that disease-modifying
therapy is most likely to be efficacious in the earliest stages
of the pathologic cascade of events leading to neuronal
dysfunction and death. Unfortunately, clinical trials of
early-stage patients who have not yet met National Institute
of Neurological and Communicative Diseases and Stroke-
Alzheimer’s Disease and Related Disorders Association
(NINCDS-ADRDA)-defined criteria for AD1 pose special
challenges. One difficulty revolves around the most appro-
priate metric to assess the efficacy of therapeutic interven-
tions in mildly affected patients. Most pharmacotherapy
trials of individuals with prodromal AD have used
conversion from a cognitively impaired but nondemented
state (so-called mild cognitive impairment, or MCI)2 to AD
as an outcome measure because AD has an accepted clinical
definition for registration and labeling purposes, and
standard cognitive measures, particularly the Alzheimer’s
Disease Assessment Scale-cognitive subscale (ADAS-cog),3

are not sensitive to change at milder degrees of impair-
ment.4,5 However, the low rates of conversion of MCI to
AD (10% to 15%/y)6 necessitate either enrolling very large
numbers of participants, or following participants for
several years to achieve sufficient power to detect a change
in the rate of conversion.7,8

Several approaches have been used to deal with these
issues. One has been to redefine AD to shift the diagnostic
threshold to earlier stages of disease by removing the
requirement for functional decline and including a require-
ment for positive biomarker findings.9 This approach takes
advantage of the impressive body of literature showing the
utility of biological biomarkers as markers of the under-
lying disease process in AD, and potentially removes the
regulatory hurdle described above, but the problems ofCopyright r 2011 by Lippincott Williams & Wilkins
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poor scale sensitivity remain. In addition, by incorporating
biomarker data, such as positive amyloid imaging or
depressed levels of cerebrospinal fluid (CSF) amyloid beta
(Ab), this strategy makes a fundamental assumption about
the relationship between drug efficacy and the biology of
AD that may not be warranted. For example, participants
with low CSF Ab levels may be less sensitive to antiamyloid
therapy as it may be more difficult to remove deposited
amyloid than to prevent its deposition. Another approach
has been to use MCI to AD conversion as an outcome
measure, but to “enrich” MCI patient pools by using either
cognitive or biomarker data to enroll participants that have
a higher likelihood of converting from MCI to AD in a
short period of time. The major advantage of this approach
compared with the first is that it retains the current
regulatory taxonomy and the primacy of functional decline
as the outcome measure.

The success of any biomarker-based enrichment
scheme depends on the appropriateness and practical
applicability of candidate markers. The ideal marker should
not only predict short-term conversion from MCI to AD
with a high degree of accuracy, but should be suitable for
screening a large population to recruit an adequate number
of participants. Certain markers, such as 11C-PIB binding,
are not widely available, and many imaging modalities
are prohibitively expensive to apply across hundreds of
potential participants. In addition, some markers, such as
loss of hippocampal volume or deposition of amyloid,
should be viewed with caution, as they may reflect a state of
disease that is too advanced to allow many therapeutic
approaches to show efficacy.

In this report, we use data from the Alzheimer’s
Disease Neuroimaging Initiative (ADNI) database, which
is ideally suited to compare multiple potential markers of
disease progression in a population of MCI patients, to
develop a tractable strategy to predict over a short period of
time (12mo) the conversion from MCI to AD. Specifically,
we use modern forms of multivariate analysis of cognitive
data to compare the ability of cognitive measures versus
neuroimaging and biochemical biomarkers to predict the
conversion from MCI to AD.

METHODS

Alzheimer’s Disease Neuroimaging Initiative
(ADNI)

ADNI is a naturalistic, longitudinal study of AD onset
and progression being conducted at 57 sites in the United
States and Canada. ADNI is supported and administered
as a public-private partnership involving the Foundation
for the National Institutes of Health, members of the
pharmaceutical and biotechnology industries, and Alzhei-
mer’s advocacy groups. ADNI’s aim is to develop validated
surrogate markers for early detection and monitoring of
disease progression, in order to inform the design and
conduct of clinical trials for the development of new AD
therapeutics.

The ADNI study was designed to follow over time
approximately 200 normal elderly individuals (36mo), 400
patients with amnestic MCI (36mo), and 200 with AD
(24mo). ADNI participants undergo evaluation at 6-month
to 12-month intervals through a battery of assessments
including cognitive and neuropsychological testing, neuroi-
maging (MRI with or without PET), and plasma and CSF
biomarkers. The resultant data are housed in an online

database (http://www.loni.ucla.edu/ADNI/) that is freely
available to researchers who request access. Data used for
the analyses presented here were accessed April 29, 2009
and comprise data from 229 normal, 397 MCI, and 193 AD
subjects. Although the ADNI database continues to be
updated on an ongoing basis, most newly added data are
from later time points (ie, beyond 1 year), in contrast to the
early data used in this study.

ADNI Participants
Participants were recruited into ADNI on an ongoing

basis over a period of approximately 2 years. Eligible
participants were 55 to 90 years of age, fluent in English or
Spanish, and had at least 6 years of education. Participants
were enrolled into 1 of 3 groups: cognitively normal,
amnestic MCI, or AD. Aside from these latter disorders,
participants could have no other significant neurologic
disease. Normal individuals were free of memory com-
plaints or depression and had a Mini-Mental State
Examination (MMSE)10 score of 24 to 30 and a Clinical
Dementia Rating (CDR) score of 0. MCI individuals met
Petersen criteria for single-domain or multidomain amnes-
tic MCI2 with MMSE scores of 24 to 30, CDR of 0.5, and
an informant-verified memory complaint substantiated by
abnormal education-adjusted scores on the Wechsler
Memory Scale Revised—Logical Memory II. Other cogni-
tive domains and everyday functioning were intact.
Alzheimer patients fulfilled NINCDS-ADRDA diagnostic
criteria for probable AD,1 with MMSE scores of 20 to 26
and CDR of 0.5 or 1.0.

ADNI Assessments
Participant cognitive status was evaluated at baseline

and at 6 to 12 month intervals using the MMSE and the
ADAS-cog.3 The standard 11-item version of the ADAS-
cog was augmented with 2 additional items (delayed word
recall and number cancellation), and results from both the
11-item and 13-item versions were included in the ADNI
dataset.

Participants were assessed by neuroimaging at base-
line, 6, 12, and 24 months. MCI individuals had additional
evaluations at 18 and 36 months; normal individuals were
also evaluated at 36 months. All participants received 1.5
Tesla (T) structural magnetic resonance imaging (MRI). In
addition, approximately 25% also received 3.0T MRI.
Fluorodeoxyglucose-positron emission tomography (FDG-
PET) was conducted on approximately half of the parti-
cipants. Cognitive assessments and neuroimaging procedures
were carried out within 2 weeks of each other.

All analyses in the present publication were done using
processed imaging data from the ADNI database. More
detailed information regarding ADNI neuroimaging in-
strumentation, procedures, regions of interest, and data
processing is publicly available on the UCLA Laboratory
of Neuroimaging (LONI) website (www.loni.ucla.edu).

In approximately 35% of MCI individuals, CSF
samples were obtained at baseline and 12 months. CSF
was frozen for subsequent batch analysis at the ADNI
Biomarker Core laboratory at the University of Pennsylva-
nia. Levels of amyloid beta (Ab1�42), total tau, and
phosphorylated tau (P-tau181) were determined using
Innogenetics’ INNO-BIA AlzBio3 immunoassay on a
Luminex xMAP platform (see Shaw et al 2009 for
methodologic details and results from baseline biochemical
biomarker analyses).11
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Derivation of a Weighted ADAS-cog Composite
Baseline cognitive data from the ADNI database on

AD, MCI and elderly control participants were used
to derive a new weighted ADAS-cog. Weights for the
ADAS-cog components were derived using the Random
Forests (RF) tree-based algorithm12,13 that compared the
3 diagnostic categories (AD, MCI, and Normal). In this
algorithm, 10,000 bootstrap datasets of the same size as the
original data are drawn randomly by sampling with
replacement. In this sampling process, some samples get
repeated multiple times, and approximately one-third of the
original data get left out; these left-out data corresponding
to each bootstrap dataset are referred as the Out-Of-Bag
(OOB) datasets. Classification Trees are grown to the
maximum possible depth for each of the 10,000 bootstrap
datasets. At each tree node, only a small random subset of
the ADAS-cog components is used to split that node.
Predictions of the diagnostic categories for each sample in
the omitted OOB datasets are then made using majority
vote from the 10,000 Trees. The predictive accuracy of this
RF model on all the ADAS-cog components is then
obtained by comparing the predictions with the true
diagnosis of the OOB samples.

The weight for each ADAS-cog component was
derived as follows. First, each component was replaced by
noise, one at a time. The RF model was then fit on this
noise component and the remaining ADAS-cog compo-
nents using the algorithm described above. The predictive
accuracy of the OOB samples was then derived and
compared with the predictive accuracy determined from
the RF model on all ADAS-cog components. The resulting
drop in predictive accuracy became the importance score
and this became the “weight” for the component that was
replaced by noise. This was repeated for each ADAS-cog
component, resulting in weights for all the components.
These weights were then used to calculate a weighted
average of all the 13 components. The resultant new
ADAS-cog composite is referred to as ADAS.Tree.

The significance of the ADAS-cog components and
composites between the three diagnostic categories (AD,
MCI, and Normal) was assessed using a Kruskal-Wallis
nonparametric test.

Evaluation of Cognitive and Imaging Markers
for Prognostication of Disease Progression

We determined the prognostic performance of baseline
cognitive markers (ADAS-cog components, ADAS-cog
composites, MMSE), CSF amyloid/tau markers (Ab1-42,
total tau, and phospho-tau) and imaging markers (FDG-
PET and volumetric MRI) in MCI individuals to correctly
identify those that progressed to AD and those that did
not over a 1-year period. PIB amyloid imaging was not
included in this analysis because baseline data were not
available. The primary objectives of these analyses were as
follows:

1. Evaluate the relative usefulness of ADAS.Tree,
ADAS.All, ADAS.11, MMSE, and the individual ADAS-
cog components to predict conversion from MCI to AD
over 1 year.

2. Identify an optimal subset of markers (called “sig-
nature”) from the ADAS-cog domain, CSF amyloid/tau
domain, FDG-PET domain and the MRI domain for
predicting MCI-AD progression (separately for each
domain, and then in combination). This will help

determine how much value is added by the baseline CSF
and imaging markers over and above the performance of
baseline signatures from the cognitive markers, and in
particular, the relative usefulness of ADAS.Tree and
ADAS.All.

FDG-PET, volumetric MRI and CSF data were not
available on all MCI patients at baseline. To enable
“apples-to-apples” comparison, separate datasets were
created for these analyses; one in which the ADAS-cog
and CSF data were available in all patients (called
Cog-CSF dataset), another in which the ADAS-cog and
FDG-PET data were available in all patients (called Cog-
PET dataset), and a third in which the ADAS-cog and MRI
data were available on all patients (called Cog-MRI
dataset).

To address objective no.1, the significance of each of
the baseline cognition composites and components was
determined separately using the nonparametric Wilcoxon
test. This was compared with the significance of the
individual CSF and imaging markers.

To address objective no. 2, multivariate analyses were
done to determine the optimal subset of markers (called
“signature”) that best detects the progression of MCI to
AD. For the Cog-PET dataset, this analysis was done
separately for the cognition markers alone, FDG-PET
markers alone, and the cognition and FDG-PET markers
together. This was similarly repeated for the Cog-MRI
dataset and Cog-CSF datasets. From all these analyses, the
performance of the optimal subset of markers to predict
MCI-AD progression was determined and compared. This
helped determine whether the CSF and imaging markers
added value over and above the cognition components and
composites, and also the relative usefulness of ADAS.Tree
and ADAS.All in this context.

For each dataset (eg, Cog-PET dataset), and for each
subgroup of markers (cognition alone, FDG-PET alone,
and cognition together with FDG-PET), optimal signatures
were derived by first filtering out the most significant
markers using a robust version of the Student t-test. The
optimal signatures were derived using one of the following
methods: (1) Relative importance scores from Random
Forests algorithm described above, and (2) Simulated
Annealing. These derived signatures were then used in
one of the following classification algorithms: (1) Linear
Discriminant Analysis, (2) Diagonal Linear Discriminant
Analysis, (3) Diagonal Quadratic Discriminant Analysis,
(4) Random Forests, (5) Support Vector Machines,
(6) Neural Network, and (7) k-Nearest Neighbor method.

The predictive performance from these classification
algorithms on the optimal signatures was evaluated using
10 iterations of a 5-fold stratified cross-validation. This was
carried out by first dividing the original dataset randomly
into 2 equal parts, stratified to ensure that each of these
parts had the same balance between disease progressors and
nonprogressors as was found in the original dataset. Then
each part was left out one at a time (test-set), and the
remaining four parts were used as a training set to derive
the optimal signature and fit the classification model
described above. The models on the training sets were then
used to predict the test-sets, and the predictions from all the
five test-sets were pooled together to estimate the perfor-
mance measures, sensitivity (ability to correctly identify
MCI-AD progression) and specificity (ability to correctly
identify nonprogressors). This entire procedure was iterated
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10 times to yield robust estimates of sensitivity and
specificity. Such a rigorous derivation of optimal signatures
is recommended also for high throughput datasets such as
genomics,14 and it provides a more accurate reflection of
the true performance in a future cohort of MCI patients.
For example, when the cross-validation is done only in the
final model fitting step after the signatures are derived from
the entire dataset, estimates of sensitivity and specificity will
be significantly biased upward.15 Therefore, performance
measures reported by different publications should be
compared with caution.

The optimal signature from the list of several
signatures that were derived as described above was selected
on the basis of Matthews Correlation Coefficient (MCC),16

sensitivity and specificity. Unlike the usual means of
describing overall classification accuracy, such as area
under the curve (AUC) measurements from receiver-
operator curves (ROC), MCC takes into consideration
the different number of participants in each class. This is
appropriate for this study, as only approximately 20% of
participants progressed from MCI to AD over the 12
month period. MCC values are expressed as percentages.
A diagram of the dataflow for these analyses is shown in
Figure 1.

Analyses were done with R (http://www.R-project.
org), version 2.7, and the contributed libraries for different
machine learning methods used in our analyses. AUC
values were compared using a w2 statistic17 implemented
with a web-based tool.18

RESULTS

Demographics
Data from a total of 819 participants were analyzed

in this study. Baseline demographic data are shown in
Table 1. Participants were well matched for age (P=0.4866,
Kruskal-Wallis test). As expected, AD patients had the
lowest number of years of education (P<0.0001, Kruskal-
Wallis test) and greatest proportion of participants that
were APOE4 positive (P<0.0001, likelihood-ratio test). In
all 3 diagnostic groups, there were more men than women
(52.0%, 64.5%, 52.8%, for Normal, MCI and AD,
respectively), and the proportion of men was greatest in
the MCI group (P=0.002, likelihood-ratio test).

Analysis of Baseline ADAS-cog Data
We analyzed baseline ADAS-cog data (the routine

subscales, ie, ADAS.11, plus delayed word recall and
number cancellation, ie, ADAS.All) from 197 AD patients,
397 MCI patients and 229 elderly control individuals in the
ADNI database. In the ADNI dataset, the subscales are
given the labels Q1 to Q12, and Q14, and we have kept this
nomenclature. Figure 2 shows the distributions of the
scores of each of the subscales. All the components are
highly significant (P<0.0001, Kruskal-Wallis test) in their
ability to distinguish diagnostic categories. However, these
box plots show an uneven capacity of the components to
separate the different diagnostic categories. For example,
Word Recall and Delayed Word Recall show clearly
separable modal values among the 3 diagnostic categories
(test statistics=359.37 and 431.57, respectively). In con-
trast, other tests, such as Commands and Ideational Praxis,
have scores that cluster near the lowest values, suggestive of
prominent ceiling effects in these populations (test statis-
tics=48.7 and 41.85, respectively). This implies that
weighting these components equally by simply summing
them up to define the composite, as presently done for the
traditional ADAS-cog, might not provide an optimal
diagnostic for AD.

As described in the statistical methods section, the
relative importance (rank) of each of the 13 components
and composites for differentiating AD, MCI, and Normal
at baseline was assessed within the framework of the
Random Forests multivariate tree-based algorithm. These
are plotted in Figure 3, expressed as mean decrease in

FIGURE 1. Diagram of data flow for characterization of performance of cognitive, CSF and imaging markers for prediction of MCI to AD
conversion. The total pool of MCI participants was divided into partially overlapping subgroups that contain participants for which
baseline ADAS-cog and candidate marker data were available. The next stage of processing involved the selection of the optimum
composite for each marker individually, or coupled with ADAS.Tree, using several multivariate approaches (see Methods for details).

TABLE 1. Demographic Data

Normal

N=229

MCI

N=397

AD

N=193

Sex
Female, n (%) 110 (48%) 141 (36%) 91 (47%)
Male, n (%) 119 (52%) 256 (64%) 102 (53%)

ApoE genotype
ApoE4, n (%) 61 (27%) 212 (53%) 127 (66%)
Non-ApoE4, n (%) 168 (73%) 185 (47%) 66 (34%)

Age (y), mean (SD) 75.9 (5.0) 74.8 (7.5) 75.2 (7.5)
Education (y), mean
(SD)

16.0 (2.9) 15.7 (3.1) 14.7 (3.1)
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predictive accuracy when each parameter was removed
from the model and replaced by noise, and sorted by
importance scores. These relative importance scores defined
the weights for these components, and a weighted sum of
these components was used to define a new composite:
ADAS.Tree. Note that Delayed Word Recall and Number
Cancellation are excluded from the usual clinical endpoint
(ADAS.11), but these are among the most powerful
components for differentiating AD, MCI, and Normal.
Construction and Ideational Praxis do not add significant
predictive value to the composite, so these received
negligible weight. The weights given for the 12 components
(Fig. 3), in order from Q1 to Q12 and Q14, are 1.05, 0.38, 0,
1.17, 0.61, 0.13, 1.13, 0.41, 0.54, 0.49, 0.69, 0.39, and 0.68,
respectively.

The performance of the MMSE, ADAS.11, ADAS.
All, and ADAS.Tree composite scores was evaluated for
the separation of the diagnostic categories of Normal, MCI
and AD (n=229, 397 and 193 for Normal, MCI and AD
respectively). All of these measures achieved highly
significant (P<0.0001) separation of diagnostic categories,
with the ADAS.Tree generating the numerically highest test

statistic of the 4 scales (Fig. 4). We also assessed the
performance of these composite scores on a dataset
separate from the training dataset. In this case, we used
the 24 month data for all participants for whom such data
were available (n=197, 284 and 135 for Normal, MCI and
AD respectively). We again found that all of these measures
were highly statistically significant (P<0.0001) and found
that the test statistic was highest for ADAS.Tree (test
statistics=401.1, 393.3, 378.9, and 368.8 for ADAS.Tree,
ADAS.All, ADAS.11 and MMSE, respectively).

Prediction of MCI to AD Conversion
We examined the relationship between the individual

ADAS-cog subscales and the composite ADAS measures
and the likelihood of conversion from MCI to AD over 12
months. The overall rate of conversion in one year was 18%
(66/349). The number of MCI-AD progressors and non-
progressors in the Cog-CSF, Cog-PET and Cog-MRI
datasets was (34, 140), (13, 74), and (64, 279) respectively.

Table 2 shows the P-values from the nonparametric
(Wilcoxon) tests for each of the subscales or composite
measures for differentiating MCI to AD converters versus

FIGURE 2. Series of box plots showing the distributions of scores on the 13 items of the full ADAS-cog across the 3 diagnostic
categories: AD, MCI and Normal (NL).
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nonconverters. The predictor with the lowest P-value was
the ADAS.Tree (P=6.23�10�10). Note again that
Delayed Word Recall (P=7.06�10�7) and Number
Cancellation (P=3.1�10�5) were among the best of the
individual subscales in predicting decline. Other subscales,
such as Comprehension (P=0.961) and Ideational Praxis
(P=0.756), showed no differences between converters
and nonconverters. Univariate comparisons were made
among the composite measures (ADAS.Tree, ADAS.All,
ADAS.11, and MMSE) for the prediction of MCI-AD
conversion and the ROC curves for these comparisons are
shown in Figure 5. The AUCs for prediction of MCI-AD
conversion were 0.746, 0.730, 0.696 and 0.589 for the
ADAS.Tree, ADAS.All, ADAS.11 and MMSE, respec-
tively. Pairwise comparison of the ADAS.Tree to the other
composites using a w2 statistic16 showed marginal super-
iority over ADAS.All (P=0.124), and that it was superior
to ADAS.11 (P=0.027) and MMSE (P=0.00024).

We assessed the relationship between baseline ADAS.
Tree and the probability of conversion from MCI to AD,
which is shown in Figure 6. Logistic regression on the
relationship between ADAS.Tree and the probability of
progression yields the sigmoidal function shown in Figure 6,
such that for each one unit increase on the baseline
ADAS.Tree, the odds ratio for conversion from MCI to
AD is 1.223 (P=2.49�10�9). Given this, and the distri-
bution of baseline ADAS.Tree values [mean (SD)=15.98
(5.14), dotted line, Figure 6], one can compute the number
of participants needed to screen to enroll a group of
individuals with a desired rate of 12-month MCI-AD
conversion.

We also compared the ability of individual ADAS-cog
components and ADAS-cog composite measures versus
individual imaging or CSF biomarker values to predict
conversion from MCI to AD over 12 months. Table 3 lists
the results of univariate analysis of the 3 CSF markers and
the ratio of total tau and p-tau181 to Ab1-42. The most

robust predictor of MCI-AD conversion is the ratio of
P-tau181 to Ab1-42 (P=0.006). Table 4 lists the top 10 FDG-
PET biomarkers and Table 5 lists the top 10 volumetric
MRI biomarkers [for a full list of P-values for all 85 FDG-
PET and 142 volumetric MRI markers, (Supplemental
Table 1 http://links.lww.com/WAD/A9) and (Supplemental
Table 2 http://links.lww.com/WAD/A8), respectively].
Note that the P-value of even the most highly predictive
imaging marker (TEMPINFL_uas, left inferior temporal
cortex) is almost 3 orders of magnitude higher than the
most predictive cognitive subscale (Word Recall) and
4 orders of magnitude higher than the most predictive
cognitive composite score (ADAS.Tree). Among the CSF
markers, Ab1-42 and p-tau181 were significantly associated
with conversion to AD, but these associations were several
orders of magnitude less significant than the best cognitive
and imaging markers.

We then compared the MCI to AD prediction
accuracy of the ADAS.Tree to optimized composite
markers from each of the three other biomarker domains:
CSF, FDG-PET, and volumetric MRI. To do this, we
applied machine-learning predictive modeling methods to
determine the optimal subset of markers (“signature”) that
best detects the 12-month progression of MCI to AD (see
statistical methods section for details).

Comparisons between the ADAS-cog and imaging or
biochemical biomarkers for the prediction of MCI to AD
conversion are shown in Table 6. For the Cog-CSF dataset,
the optimal signature from the CSF markers alone had
62.65% sensitivity and 54.2% specificity (MCC=13.4%).
The optimal signature from the cognitive markers alone
had 76.5% sensitivity and 63.9% specificity (MCC=
32.2%), and the optimal signature from the CSF and
cognitive markers had 76.8% sensitivity and 63.9% speci-
ficity (MCC=32.5%). Thus, the performance of cognitive
markers alone was superior to the CSF markers alone, and
the addition of CSF markers to the cognitive markers did
not substantially improve the predictive performance.

For the Cog-PET dataset, the optimal signature from
the PET markers alone had 55.4% sensitivity and 85.5%
specificity (MCC=36.4%). The optimal signature from the
cognitive markers alone had 63.1% sensitivity and 82.2%
specificity (MCC=37.8%), and the optimal signature from
the PET and cognitive markers had 56.9% sensitivity and
83.7% specificity (MCC=34.7%). Thus, the performance
of cognitive markers alone was quite comparable to the
PET markers alone, and the addition of PET markers
to the cognitive markers did not result in substantial
improvement.

For the Cog-MRI dataset, the optimal signature
from the MRI markers alone had 57.5% sensitivity and
62.3% specificity (MCC=15.6%). The optimal signature
from the cognitive markers alone had 67.3% sensitivity and
67.4% specificity (MCC=27.7%), and the optimal signa-
ture from the MRI and cognitive markers had 66.6%
sensitivity and 66.5% specificity (MCC=26.3%). Thus, the
performance of cognitive markers alone was superior to the
MRI markers alone, and the addition of MRI markers
to the cognitive markers did not improve predictive
performance.

Lists of the most frequently occurring cognitive and
CSF, MRI, and PET markers in the signatures from 10
repetitions of 5-fold cross-validation (out of 10�5=50
signatures) are summarized in Figures 7A to C, respec-
tively. ADAS.Tree plays the most prominent role among

FIGURE 3. Plot of the relative importance of each of the
individual components of the ADAS-cog, as determined using a
tree-based multivariate modeling algorithm. The plot shows the
decrease in predictive accuracy of each of the components as
each component is replaced, one at a time, by noise.
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the cognition markers. ADAS.All, MMSE and some
specific ADAS-cog components such as Q1 (Word Recall),
Q4 (Delayed Word Recall), and Q7 (Orientation) feature
fairly prominently as well. Most importantly, we continued
to observe that the primary endpoint, ADAS.11, has
considerably less predictive value relative to the other
cognitive composites considered and also relative to some
of the specific ADAS-cog components.

DISCUSSION
Multivariate modeling using a Random Forests

approach applied to the ADNI dataset showed that
modified weighting of the subscales of the 13-item ADAS-
cog (ADAS.Tree) is better able to separate the diagnostic

FIGURE 4. Box plots of the distributions of the traditionally weighted composite scores (ADAS.11, ADAS.All and MMSE), and the
composite score weighted using a tree-based algorithm (ADAS.Tree). The Kruskal-Wallis w2 test statistic (Stat) and P-value (P) are shown
for each comparison.

TABLE 2. Significance of Each Component of the ADAS-cog and
Composite ADAS-cog Scores for Identifying MCI Patients That
Progressed to AD Over a 12-month Period

Marker P

Q1. Word recall 8.17E-09
Q2. Commands 0.725
Q3. Construction 0.785
Q4. Delayed word recall 7.06E-07
Q5. Naming 0.437
Q6. Ideational praxis 0.756
Q7. Orientation 0.0042
Q8. Word recognition 0.0005
Q9. Recall instructions 0.0119
Q10. Spoken language 0.121
Q11. Word finding 0.136
Q12. Comprehension 0.961
Q14. Number cancellation 3.10E-05
ADAS.All 7.46E-09
ADAS.11 4.61E-07
MMSE 0.0188
ADAS.Tree 6.23E-10

Gray shading denotes components or composites with P<0.05.
ADAS.All indicates 13-item version Alzheimer’s Disease Assessment

Scale-cognitive subscale; MMSE, Mini-Mental State Examination.

FIGURE 5. ROC curves for all composite cognitive measures
assessed for the conversion of MCI patients to AD. AUC values for
the composites were 0.746 for ADAS.Tree, 0.730 for ADAS.All,
0.697 for ADAS.11 and 0.589 for MMSE.
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categories of elderly control, MCI, and AD than the
traditional version of the ADAS-cog. Furthermore, we
showed that ADAS.Tree provides at least comparable
predictive power for 12-month conversion from MCI to
AD when compared with optimized biomarker profiles
derived from volumetric MRI, FDG-PET, or CSF analysis.
Much of the predictive power of the ADAS.Tree model is
derived from the Delayed Word Recall task, with a lesser,
but significant, contribution from the Number Cancellation
task, both of which are not typically included in the ADAS-
cog when used as a primary outcome measure for regis-
tration trials. It is important to note that the ADAS.Tree,
which was optimized to discriminate between diagnostic
categories, not to predict MCI to AD conversion, per-
formed as well as composite imaging signatures that were
optimized for the conversion from MCI to AD. These data
suggest that a modified weighting system of the expanded
ADAS-cog may play a role in an optimal screening
algorithm for the prediction of MCI to AD conversion.

Multiple previous studies have identified prognostic
markers for progression of MCI to AD. Deficits in episodic
memory and/or executive function,19 total ADAS-cog,20

abnormal CSF [low Ab (total or subtypes), high tau and/or
high P-tau],21 whole brain or regional volume changes,22,23

decreases in brain metabolic activity,24,25 brain PIB
binding,26,27 or combinations of the above,28 can predict
the conversion from MCI to AD. However, few studies
have compared CSF or imaging markers with cognitive
markers. One example is Fleisher et al29 who studied 129
MCI participants over 36 months, and found that the
optimal prediction model consisted of delayed 10-word
recall, the NYU delayed paragraph recall and the ADAS-
cog. Addition of volumetric MRI did not increase the
performance of the model. Similarly, Jack et al30 found that
baseline free and cued selective recall performed as well as
baseline hippocampal volume in the prediction of conver-
sion of MCI to AD. These studies are consistent with our
findings that cognitive assessments perform similarly to
imaging biomarkers in the prediction of MCI to AD con-
version. In contrast, Anchisi et al31 found that a composite
of several volumes of interest in temporoparietal regions
and posterior cingulate cortex was a better predictor than
any of several individual cognitive tests, with the California
Verbal Learning Test-long delay being the best cogni-
tive predictor (AUC from the ROC curve for FDG-
PET=0.863 vs. 0.783 for CVLT-long delay). In addition,
Devanand et al31 found that a model that contained
demographic data and the Selective Reminding Test and
the WAIS-Digit-Symbol test (encompassing similar cogni-
tive domains as the Delayed Word Recall and Number
Cancellation Task, tested here), had 80% sensitivity (at a
fixed specificity of 80%) for prediction of conversion from
MCI to AD over 3 years. Addition of baseline hippocampal
and entorhinal cortex volumes enhanced sensitivity to 83.3%.

In interpreting the findings from the present analyses,
it should be noted that the MCI participants in ADNI were
selected to meet Petersen criteria for amnestic MCI, and as
such, represent a more advanced point in the disease
spectrum than MCI participants in some other studies. This
may account in part for the predictive value of the number
cancellation task, which is more attuned to later-stage MCI
patients. Our analyses may well have yielded different
ADAS-cog weightings and predictive biomarkers if applied
to an earlier MCI population.

Our approach differs from many of the other
approaches in 2 important respects. First, we have focused
on the short-term (12-mo) conversion rates from MCI to
AD, whereas many of the others have looked at longer

FIGURE 6. Solid sigmoid curve represents the probability
of conversion from MCI to AD as a function of baseline
ADAS.Tree score. Regression equation: Probability of conversion
=[1+exp(4.979-0.202*ADAS.Tree)]�1. Ordinate is on the left.
The dashed curve represents the fitted probability density for the
distribution of baseline ADAS.Tree values for MCI participants in
the study. Summary statistics for this distribution: Min: 3.22, Q1
(25th percentile)=12.16, Q2 (median)=16.11, Q3 (75th percen-
tile)=19.57, Max=32.79, Mean±SD=15.96±5.14 Ordinate is on
the right.

TABLE 3. Significance of Each CSF Marker and Marker Ratios for Identifying MCI Patients That Progressed to AD Over a 12-month
Period

Rank ADNI Marker Common Name N1 N2 P

1 PTAU181p_upe/ABETA142_upe ptau 181/amyloid beta 1-42 140 35 0.006
2 ABETA142_upe Amyloid beta 1-42 140 35 0.036
3 PTAU181p_upe ptau 181 140 35 0.080
4 TAU_upe/ABETA142_upe Total tau/amyloid beta 1-42 140 35 0.17
5 TAU_upe Total tau 140 35 0.259

ADNI Marker indicates name of marker, as listed in ADNI dataset. Three-letter suffix refers to site where analysis took place. Common name=typical
name of marker; N1=number of MCI patients for whom baseline CSF data and 12-mo clinical data are available; N2=number of MCI patients that
converted to AD over a 12-mo period.

upe indicates University of Pennsylvania.

Llano et al Alzheimer Dis Assoc Disord � Volume 25, Number 1, January–March 2011

80 | www.alzheimerjournal.com r 2011 Lippincott Williams & Wilkins



periods. Indeed, many other types of biomarkers such as
CSF Ab/p-tau21 or combinations of CSF and brain blood
flow33 have shown a very impressive ability to predict
conversion from MCI to AD over a 4-year to 5-year follow-
up period. However, in both of these studies, review of the

12-month conversion data shows very modest separation at
best. The second major difference is the use of a novel
multivariate approach to generate a weighting system for
the ADAS-cog. Multivariate approaches coupled with
machine learning algorithms provide a powerful means to

TABLE 4. Significance of Top 10 FDG-PET Markers for Identifying MCI Patients That Progressed to AD Over a 12-month Period

Rank ADNI Marker Common Name N1 N2 P

1 PRECUNL01_bai Left precuneus 1 146 23 0.0004
2 OCCMIDR04_bai Right mid-occipital cortex 4 80 14 0.0020
3 PRECUNL02_bai Left precuneus 2 104 20 0.0020
4 Angular.Left_ucb Left angular gyrus 155 23 0.0021
5 PARIINFR01_bai Right inferior parietal cortex 104 20 0.0022
6 PRECUNR02_bai Right precuneus 2 146 23 0.0023
7 TMPMIDR04_bai Right mid-temporal cortex 4 80 14 0.0024
8 TMPMIDR01_bai Right mid-temporal cortex 1 104 20 0.0026
9 CINGPSTL02_bai Left posterior cingulum 2 146 23 0.0027
10 OCCMIDL01_bai Left mid-occipital cortex 1 104 20 0.0031

ADNI Marker, name of marker, as listed in ADNI dataset. Three-letter suffix refers to site where analysis took place. Common name=typical name of
marker; N1=number of MCI patients for whom baseline FDG-PET data and 12-mo clinical data are available; N2=number of MCI patients that converted
to AD over a 12-mo period.

bai indicates Banner Alzheimer’s Institute; ucb, University of California at Berkeley.

TABLE 5. Significance of Top 10 Volumetric MRI Markers for Identifying MCI Patients that Progressed to AD Over a 12-month Period

Rank ADNI Marker Common Name N1 N2 P

1 TEMPINFL_uas Left inferior temporal cortex 280 65 4.29E-06
2 TEMPPLSUPL_uas Left superior temporal pole 280 65 1.24E-05
3 HIPPL_uas Left hippocampus 280 65 1.62E-05
4 TEMPINFR_uas Right inferior temporal cortex 280 65 7.39E-05
5 TEMPMIDL_uas Left middle temporal cortex 280 65 8.69E-05
6 LEFTHIPPO_sf2 Left hippocampus 214 45 8.90E-05
7 R_MID_TEMPORAL_ucd Right middle temporal cortex 157 31 9.03E-05
8 L_MID_TEMPORAL_ucd Left middle temporal cortex 157 31 9.73E-05
9 AMYGDR_uas Right amygdala 280 65 0.0001
10 AMYGDL_uas Left amygdala 280 65 0.0002

ADNI Marker, name of marker, as listed in ADNI dataset. Three-letter suffix refers to site where analysis took place. Common name=typical name of
marker; N1=number of MCI patients for whom baseline CSF data and 12-mo clinical data are available; N2=number of MCI patients that converted to AD
over a 12-mo period.

sf2 indicates University of California at San Francisco; uas, University of Arizona; ucd, University of California at Davis.

TABLE 6. Performance Summary of the Optimal Signatures for Cog-CSF, Cog-PET, and Cog-MRI Datasets

No. Pre-Filtered

Signature

Size Model

Sensitivity

(SE) (%)

Specificity

(SE) (%)

AUC

(SE) (%)

MCC

(SE) (%)

CSF
CSF alone None 3 DLDA 62.65 (1.24) 54.21 (0.33) 58.43 (0.66) 13.38 (1.04)
Cog alone None 3 DQDA 76.47 (0.62) 63.86 (0.22) 70.16 (0.29) 32.21 (0.46)
CSF+Cog None 3 DQDA 76.76 (0.53) 63.93 (0.29) 70.35 (0.22) 32.51 (0.34)

PET
PET alone 30 5 DLDA 55.38 (1.54) 85.54 (0.99) 70.46 (1.04) 36.41 (2.21)
Cog alone None 10 DQDA 63.08 (1.54) 82.16 (1.19) 72.62 (0.92) 37.76 (1.85)
PET+Cog 30 25 DQDA 56.92 (3.08) 83.64 (0.71) 70.29 (1.45) 34.66 (2.26)

MRI
MRI alone 50 10 DLDA 57.50 (1.09) 62.26 (0.50) 59.88 (0.62) 15.63 (0.98)
Cog alone None 10 DLDA 67.34 (0.37) 67.38 (0.14) 67.36 (0.23) 27.73 (0.36)
MRI+Cog 80 5 DLDA 66.56 (1.31) 66.45 (0.45) 66.51 (0.58) 26.29 (0.88)

The number of markers prefiltered (if any), final signature size, fitted model, and the corresponding sensitivity, specificity, AUC, and MCC from the 10
repetitions of fully embedded 5-fold stratified cross-validation are shown. Standard Errors (SE) are derived from these 10 repetitions.

DLDA indicates Diagonal Linear Discriminant Analysis; DQDA, Diagonal Quadratic Discriminant Analysis.
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explore a massive dataset (such as ADNI) for optimal and
robust combinations of predictors. In this study, the
ADAS.Tree, whose components were weighted using a
Random-Forest-based algorithm, outperformed the un-
weighted ADAS.All by nearly an order of magnitude. This
is consistent with other work demonstrating a substantial
advantage of the use of machine-based multivariate
analyses.34,35

There are several advantages to an enrichment scheme
based on cognitive testing, rather than imaging or CSF
biomarkers. First, from a pragmatic and cost-containment
point of view, cognitive testing is clearly superior. Unlike
proposals to use imaging and CSF biomarkers as outcome
measures, which could potentially be feasible when applied
to satellite populations,36 assessing all potential partici-
pants through volumetric MRI, FDG-PET, or lumbar

FIGURE 7. Summary of the % frequency of cognitive and CSF markers (A), cognitive and FDG-PET markers (B) and cognitive and MRI
markers (C) that appear in the signatures across 10 repetitions of 5-fold cross-validation (10�5=50 signatures) from the optimal model
for predicting 12-month progression from MCI to AD.
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puncture for purposes of enrichment could severely limit
the number of participants screened for a study. In
addition, screening participants through a biological
marker such as Ab deposition (eg, as imputed indirectly
based on low concentrations of CSF Ab1�42), may enrich
for a population that is less sensitive, for any given level of
cognitive performance, to drug effects as the pathology may
be further along its destructive cascade. It may also be
argued that CSF or imaging biomarkers add specificity to
the prediction of MCI to AD conversion. However, we
found that the addition of these markers did not
substantially alter the model’s specificity for progression
from MCI to AD.

We have relied on processed data from the ADNI
dataset to derive our predictive models. It is possible that
other approaches to processing the raw imaging data may
produce more robust predictors of MCI to AD conversion.
This is suggested by this study, where similar anatomical
regions that were processed differently (eg, left precuneus in
Table 4) are seen more than once, but with different P-values
for prediction of MCI to AD conversion. It is also possible
that markers that combine modalities, such as CSF+imaging
or genotype+imaging may provide better predictors of MCI
to AD conversion. However, on the latter point, it is worth
noting that combination biomarker approaches that cross
domains (eg, imaging+CSF), place a high burden on the
conduct of the study, such that enhanced predictive power
may be of very little practical value.

Another important methodologic issue raised by this
study is that of cross-validation. Many studies of the
predictive and diagnostic utility of AD biomarkers report
sensitivity and specificity values, or ROC AUC values,
based on the application of a decision rule onto the same set
of data from which that model was generated. This may
generate inflated values of specificity and sensitivity.15 By
contrast, we have used a form of cross-validation, described
in the Methods section, to determine the sensitivity and
specificity of our predictive models. For this reason, the
values of sensitivity and specificity reported in this study are
lower than those typically reported in other studies that
have not used cross-validation. Clearly, the optimum form
of validation will involve testing our model on a novel
database, and this external validation will be pursued in the
future.

This study also raises questions about the overall
utility of the traditional ADAS-cog as a metric of cognitive
function. The ADAS-cog has not changed in form since it
was first introduced in 1984. Although it has gained
popularity, primarily driven by its ability to detect drug
effects in the pivotal trials of the cholinesterase inhibitors, it
has well-recognized ceiling effects that limit its usefulness in
patients with MCI or mild AD.4 It is clear from Figure 2
that most MCI participants cluster toward the low end of
the scale across several domains (eg, naming, ideational
praxis and orientation), producing prominent ceiling effects
for these participants in these categories. This could
potentially be overcome by either reweighting the scale to
deemphasize the less informative subscales, as was essen-
tially done here, although in this case indexed to maximize
separation between diagnostic categories. Another ap-
proach could be to tailor the less informative scales to
increase their dynamic ranges (ie, altering the difficulty of
tests based on the presence of floor or ceiling effects), or
indexing scores based on their precision and performance
relative to global performance (eg, Rasch analysis).37 In this

light, it is important to distinguish between the work
presented here, which uses the ADAS-cog as a screening
tool, and the work by Hobart, Cano and others, who have
analyzed the ability of the ADAS-cog to serve as a reliable
metric of cognitive function. For example, Hobart et al
(2009) reported that the additional two components
included in the ADAS-cog 13 (Delayed Word Recall and
Number Cancellation) add very little to the metric proper-
ties of the 11-item ADAS-cog in AD patients.38 Our
findings are not inconsistent with this, as there are
prominent floor effects seen with Delayed Word Recall in
AD patients, as shown in Figure 2. This suggests that
different components of the ADAS-cog may be most
suitable for different needs (eg, serving as an outcome
metric vs. serving as a screening tool).

Our findings suggest that relatively simple modifica-
tions of the ADAS-cog enhance its ability to predict
conversion from MCI to AD in a time period that is
tractable for clinical trials. It is important to emphasize that
imaging and/or CSF biomarkers still play a key role in AD
drug development as markers of disease state and progres-
sion risk. However, for the particular application described
herein, the modified ADAS-cog may have practical
advantages, driven by the wide experience with this test,
its multilingual and multicultural validations, and its ease
of administration. Further, the multivariate approach used
to optimize the ADAS-cog weights may be tailored for
other applications, potentially expanding the utility of the
ADAS-cog for other patient populations.
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