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Abstract
Dynamic network visualization has been a challenging topic for dynamic networks analysis, especially for spa-
tially embedded networks like brain networks. In this paper, we present an animated interactive visualization
design that combines enhanced node-link diagrams and distance matrix layouts to assist neuroscientists in their
exploration of dynamic brain networks and that enables them to understand how functional connections relate to
the spatial structure of the brain. Our visualization also provides the ability to observe the evolution of a network,
the change in the community identities, and node behavior over time.

Categories and Subject Descriptors (according to ACM CCS): H.5.0 [Information Interfaces and Presentation]:
General—

1. Introduction

Social network analysis (SNA) has been presented as a use-
ful approach to modeling neurobiology, helping neuroscien-
tists explore their data in new ways. When applying SNA to
brain networks, a node usually represents a sub-region of the
brain, such as a single neuron or a group of neurons, while
an edge represents a physical or functional connection be-
tween two nodes. Node-link diagrams and the matrix layouts
are the two most common visual representations used for vi-
sualizing social networks. The node-link diagram is more
useful for path finding tasks and tends to be more effective
for small sparse graphs. Alternatively, the matrix represen-
tation is good for large dense graphs, and avoids the visual
clutter associated with overlapping nodes and edges cross-
ings [GFC05]. When applying SNA to the study of neural
networks, both of these properties are desirable. Neurosci-
entists need to explore the functional connectivity within the
brain and also to understand how this functional connectiv-
ity is related to its spatial structure. The node-link diagram
efficiently models the spatial structure of the brain while the
matrix layout can enable some tasks that are more difficult
using a node-link diagram, i.e., finding the most-connected
node or comparing the distance between nodes [HF06].

However, standard SNA is not sufficient for solving real
world problems since most of the networks are dynamic in
nature. In dynamic network analysis (DNA), detecting the

evolution of communities can reveal important changes in
network structure over time. A dynamic community is de-
fined as a time-series of sets of nodes that tend to inter-
act with their home communities most of the time [Was94],
and that do not change their home community affiliation
too often [BHKL06]. To develop our visualization tool, we
worked closely with neuroscientists at a large research uni-
versity who use a dynamic community identification algo-
rithm [BWTK10, TBW09] in the context of exploring the
change in connections and community identities over time
within the brain. According to the concept of dynamic com-
munity identification, each node (neuron) has two commu-
nity identification codes: Home Community, identifying
the community that the neuron belongs to; and Temporary
Community, identifying the community that the neuron cur-
rently visits. Thus, there are four possible statuses for each
neuron at a certain time step: 1) the neuron stays in its home
community, 2) the neuron visits a temporary community, 3)
the neuron is active but unobserved, and 4) the neuron is
non-active.

We interviewed neuroscientists to get a better understand-
ing of their visual analytics needs. These neuroscientists
have been analyzing time-series images from mouse brain
slices in which neurons have relevant spatial relationships.
Based on the conversation with our collaborators, we were
able to identify four tasks that are of interest to them, and
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for which visualization tools are not readily available that fit
their precise needs: Task 1: Discover how functional con-
nections between neurons are related to their spatial layouts;
Task 2: Explore metrics related to the path between indi-
rectly connected neurons (such as distance). Task 3: Explore
how the network structure (i.e., brain connectivity) changes
over time; Task 4: Track the change of community identities
over time.

In this paper, we present an animated dual-representation
consisting of both representations, following the idea of
Henry and Fekete [HF06]. Based on the analysis of the tasks
for effective analytics of dynamic brain networks, we cre-
ate an interactive prototype that combines what we call “en-
hanced” node-link diagrams that incorporates information
about community status with a matrix representation. This
dual-representation of the brain network features the use of
integrated animated transitions to explore the dynamics of
brain networks as they change over a series of time steps.
Our visualization allows the operator to use the matrix view
or the node-link view as a controller when exploring the
brain network structures in the other view. Feedback from
a domain scientist illustrates how this visualization can aid
neuroscientists in exploring the evolution of communities
and behaviors of individual nodes in small dynamic brain
networks.

2. Related Work

Useful tools for visualizing brain connectivity have been
introduced, including BrainNetVis [CSTT11] and Brain-
Net Viewer [XWH13]. In addition, several novel visu-
alization techniques have been introduced. Al-Awami et
al. [HAAB∗14] investigate a subway map metaphor for
visualizing nanoscale neural connectivity in their Neuro-
Lines technique. Sorger et al. [SBS∗13] introduce neu-
roMap to render the brain and its interconnections. Alper et
al. [ABHR∗13] compare an augmented node-link with adja-
cency matrix visualizations to explore effective ways to visu-
alize brain connectivity data. Ghoniem et al. [GFC05] state
that the matrix-based visualization outperforms the node-
link diagram on most tasks, except for pathfinding tasks.
Henry and Fekete present MatLink [HF07], an enhanced
matrix-based graph visualization that has significant advan-
tages for path-related tasks. They also implement MatrixEx-
plorer [HF06], consisting of two parallel representations that
provide users with the freedom to choose the most suitable
representation for a task. In visualizing dynamic networks,
Moody et al. [MMBd05] introduce techniques for tempo-
ral representations, and Forbes et al. [FHL10] introduce a
framework for dynamic data visualization. Gephi [BHJ∗09],
a visualization tool, allows a user to “play” a dynamic net-
work as a movie sequence. Both Archambault et al. [APP11]
and Ghani et al. [GEY12] discuss the use of animation for
visualizing dynamic graphs. Bach et al. [BPF14] presents
a Matrix Cube representation that maps time to a third di-
mension. More recently, Beck et al. [BBDW14] summa-

rize visualization techniques for dynamic graphs. Khairi et
al. [RTJ∗11] and Vehlow et al. [VBAW14] work on visualiz-
ing the evolution of communities within dynamic networks.
Although a number of dynamic networks visualizations ex-
ist, none is effective for our goal, which is to integrate spatial
and non-spatial features of dynamic networks for the tasks
defined above.

3. Visualization Design

Our visualization design provides an interactive exploration
of dynamic networks within the brain using a integrated
combination of an enhanced animated node-link diagram
along with an animated distance matrix representation.
Again, our main goal in developing this tool is to help neu-
roscientists understand: how the functional connections in
the brain change over time, how the community identities
of neurons change over time, and to help promote an un-
derstanding of how these connections and community iden-
tities are related to the spatial structures of the brain. Fig-
ure 1 shows a screenshot of our visualization, containing the
coordinated views of the node-link diagram and the matrix
layout, along with a timeline-based graph.

Figure 1: Screenshot of our visualization tool showing the
coordinated dual-representation of dynamic network data.
Here we show calcium imaging data obtained from 40 cells
in the mouse thalamus at a particular time step.

3.1. Enhanced Node-link Diagram

For spatially embedded networks like brain networks, the
node-link diagram is considered to be more intuitive com-
pared to other representations when exploring the relation-
ship between spatial structures and network structures. The
layout of the node-link diagram is based on the actual phys-
ical structure of the nodes. As described in Section 1, we
visualize the four states of a node using what we are called
the “Square-Circle” model, using a glyph that is made up of
colored circle surrounded by a colored square. The color of
the circle represents Home Community, while the color of
the square shows the node’s Temporary Community (Fig-
ure 2).
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Figure 2: Four possible status: (a) stay (b) visit, (c) unob-
served, and (d) non-active.

Since the physical structures of the brain do not change
over time, the positions of nodes in the node-link diagram
are fixed. We use animation to visualize how the connec-
tions between nodes and the community identity of the nodes
change over time. However, one weakness of the animation
is that the user has to memorize the previous state if they
want to compare two time steps. We employ a technique, in-
spired by Alper et al. [ABHR∗13], that encodes the informa-
tion of the previous state in the Square-Circle representation
as transitions. The upper part of the Square-Circle represen-
tation shows the state in the previous time step, while the
lower part shows its state in the current time step. Figure 3
lists all the possible cases for a node displaying both its home
and temporary community identifications across two time
steps, offering a clear way to see the transitions over time.
The enhanced node-link diagram with animation is designed
mainly for tasks 1, 3, and 4.

Figure 3: All the possible cases showing the transitions of
community identification between two time steps.

3.2. Animated Distance Matrix

Adjacency matrices are often used for the analysis of dense
networks. However, one weakness of the adjacency matrix is
that it only shows the direct connection between two nodes.
To better understand how nodes connect with each other (di-
rectly or through other nodes) in dynamic networks we use
the distance matrix instead of the adjacency matrix for task
2, and we map time using animation to show the change of
the distances between two nodes over time.

Figure 4 shows a simple example of a dynamic network
consisting of five nodes with fixed positions at three time
steps. They are visualized using node-link diagrams on the
left, adjacency matrices in the middle, and distance matri-
ces on the right. An edge is encoded by a colored cell in

Figure 4: Snapshots at three different time steps with three
representations: node-link diagrams (left), adjacency matri-
ces (middle), and distance matrices (right).

the adjacency matrix. The distance is encoded by a gradient
color in the distance matrix. The darker the cell, the shorter
the distance. We see an edge between node C and node E
appears at time t, which does not exist at time t − 1. Corre-
spondingly, in both of the matrix representations, the change
of the color of the cell at the intersection of node C and node
E indicates the decrease in distance between C and E. How-
ever, the change of the distance between node A and node E
cannot be retrieved from the adjacency matrices since node
A and node E are not neighbors.

Figure 5: (a) The distance decreases from time t − 1 to t,
(b) the distance increases from time t − 1 to t, and (c) no
changes.

To reveal the change of the distance between two nodes
across two time steps, we use the idea of inner and outer
squares division [ABHR∗13]. Figure 5 presents three exam-
ples of these transitions. With this representation, the user
can easily tell if a node chooses a different path to connect
another node, as in Figure 5 (a) and (b). Figure 5 (c) indicates
the distance does not change.

3.3. Interaction

When interacting with the nodes and edges in the distance
matrix, the node-link diagram is synchronized by selection.
Moving the mouse over the circles on the top or left of the
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matrix highlights the corresponding node in both the ma-
trix and node-link diagram. Clicking the circle draws only
the edges between that node and its immediate neighbors
in the node-link diagram. Clicking on a matrix cell draws
only the shortest path between the two nodes that intersect
at the cell. if the inner color of the selected cell is differ-
ent from its outer color, the current shortest paths are drawn
in black and previous shortest paths in red. Clicking on a
node in the node-link diagram has the same effect as inter-
acting with the node in the distance matrix. In addition, the
user can drag a node around to avoid overlapping with other
nodes. Play/Pause/Stop buttons are used for operating the
animation. A time slider provides users the option to jump
to a particular time step based on the information gained
from the timeline graph below it. The timeline graph plots
the total number of edges in the network over time by de-
fault. It is used to instead plot the number of neighbors of
a certain node over time when a node is selected, or plots
the change of distance over time when a pair of nodes is se-
lected. The on-line version of our visualization tool can be
found at http://brainviz.github.io/DyNetViz.

Figure 6: In (a) the red edge shows the red node (32) and
green node (13) connecting through an intermediate neuron
at t − 1. The black lines indicate the connectivity at t. (b)
shows the intersection of the two neurons (the circled cell).
(c) plots the distance between the two neurons over time.

4. Case Study

To validate the usefulness of our visualization design, we
asked our neuroscientist collaborator to use the visualization
tool to study his domain data and collected feedback on its
current and potential utility. Specifically, we were interested
in knowing if our visualization techniques can help neuro-
scientists to analyze domain problems related to our identi-
fied tasks more effectively. The neuroscientist used calcium
imaging data obtained from 40 cells in the mouse thalamus
(as shown in Figure 1). The thalamic cells were stimulated
synaptically by placing an electrode in the auditory mid-
brain. Figure 6 (a) shows the connections between neuron
13 and neuron 32 at two time steps when clicking on the
intersection (the circle cell) of the neurons in the distance
matrix in Figure 6 (b). We can see that neuron 13 in the

green community connects neuron 32 in the red community
through two neurons at current time, one of which stays in
the green community currently but stays in the red commu-
nity at previous time. After using the visualization tool, the
neuroscientist found the node-link view to be useful in iden-
tifying the other nodes that are functionally connected to an
index node. The main utility in the node-link diagram is in
its ability to show correlated cell activity at various locations
linking cell responses and morphology and to show how this
activity is functionally connected to other cells in known lo-
cations. He found that the Square-Circle model is also useful
to see transitions over time. The value in seeing the transi-
tion is that it may assist the neuroscientist to determine if the
network is changing functional connectivity with respect to
a stimulus or to a behavior. However, he indicated that the
helpfulness of the matrix view is weaker compared to the
node-link view, though admitting that this may partly be due
to his unfamiliarity with this kind of network representation.
He points out that the distance could be useful to the extent
that it could help build a potential path between functionally
distant nodes. Nonetheless, we were pleased by this initial,
mainly positive response which indicates some potential for
coordinated, animated views for the application of SNA to
dynamic networks in the domain of neuroscience.

5. Discussion and Future Work

Our visualization design is effective for small networks
containing less than 100 neurons. When scaling to larger
datasets, we plan to let the user interactively investigate sub-
networks of interest. We found that animation is effective to
show change over time, at least in small networks; it pro-
vides an overview of the evolution of networks and commu-
nities which enables neuroscientists to identify critical time
steps. Future work will evaluate the use of animation in more
complex scenarios. Although the half Square-Circle glyph is
currently used to show the changes between two consecutive
time steps, we plan to provide users with the ability to choose
any two time steps for comparison in the future, which could
also mitigate some of the issues with perceiving information
via animation. Currently the distance matrix is ordered arbi-
trarily by a neuron ID number. A future improvement is to
develop effective matrix ordering algorithms that enable the
user to order the matrix by a particular statistic, such as node
degree, node consistency, or the size of community.

In this paper we presented an interactive visualization sys-
tem consisting of coordinated node-link diagrams and dis-
tance matrices for visualizing dynamic brain networks. With
this visualization, a user can observe the simultaneous evo-
lution of both the communities in the networks over time
as well as the behavior of individual nodes,. revealing the
relationship between the spatial structures of the brain and
their functional connectivity. Feedback from a domain scien-
tist indicate that our technique enables researchers to gather
visual evidence, generate new hypotheses, and more effec-
tively explore their data.
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