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Sleep and wakefulness are characterized by distinct states of thalamocortical

network oscillations. The complex interplay of ionic conductances within the

thalamo-reticular-cortical network give rise to these multiple modes of activity and

a rapid transition exists between these modes. To better understand this transition,

we constructed a simplified computational model based on physiological recordings

and physiologically realistic parameters of a three-neuron network containing a

thalamocortical cell, a thalamic reticular neuron, and a corticothalamic cell. The network

can assume multiple states of oscillatory activity, resembling sleep, wakefulness, and

the transition between these two. We found that during the transition period, but not

during other states, thalamic and cortical neurons displayed chaotic dynamics, based on

the presence of strange attractors, estimation of positive Lyapunov exponents and the

presence of a fractal dimension in the spike trains. These dynamics were quantitatively

dependent on certain features of the network, such as the presence of corticothalamic

feedback and the strength of inhibition between the thalamic reticular nucleus and

thalamocortical neurons. These data suggest that chaotic dynamics facilitate a rapid

transition between sleep andwakefulness and produce a series of experimentally testable

predictions to further investigate the events occurring during the sleep-wake transition

period.

Keywords: thalamocortical, computational model, nonlinear dynamics, GENESIS, chaos

INTRODUCTION

The specific anatomy of thalamocortical circuitry along with the interactions of ionic conductances
in thalamic and cortical cells give rise to multiple modes of activity that characterize behavioral
states such as the sleep-wake cycle and generalized epilepsy. During drowsiness and sleep, large
groups of neurons fire synchronously giving rise to oscillatory activity such as spindle (6–14Hz),
delta (1–4Hz), and slow (<1Hz) oscillations, all of which may be observed in the constituent cells
of the thalamus and cortex; thalamocortical (TC) cells, neurons in the thalamic reticular nucleus
(RE) and deep-layer cortical neurons (CX; Steriade, 2005; Huguenard and McCormick, 2007). TC
neurons project primarily to layer 4 of cortex, and also send projections to other layers, including
infragranular layers (Beierlein and Connors, 2002; Meyer et al., 2010). Corticothalamic projections,
which arise from layers 5 to 6, terminate on TC neurons as well as on neurons of the RE (Liu and
Jones, 1999; Zikopoulos and Barbas, 2006; Llano and Sherman, 2008). TRN neurons, which receive
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excitatory input from TC and CX neurons, send GABAergic
projections to TC neurons (Pinault, 2004). Interplay of intrinsic
ionic properties of single neurons from these structures,
modulated and orchestrated by the synaptic interactions of large
groups of neurons, likely play a large role in generating coherent
oscillatory activity in the brain.

One cellular mechanism which has been postulated to play
an important role for the generation of large-scale oscillatory
activity is post-inhibitory rebound (PIR) present in TC and RE
neurons, as well as a subset of CX neurons (Stafstrom et al.,
1984; Steriade et al., 1993b). This mechanism is associated with
low-threshold Ca2+ (IT) as well as hyperpolarization-activated
cation currents (IH) through hyperpolarization-activated cyclic
nucleotide-gated (HCN) channels (Lüthi and McCormick, 1998;
Sherman, 2001; Timofeev et al., 2002; Kramer et al., 2008). For the
calcium component, after TC neurons have been hyperpolarized
for a protracted period of time (∼50–100ms), IT becomes
de-inactivated, releasing the low-threshold calcium conductance
for activation (Jahnsen and Llinas, 1984). Elimination of IT
greatly disrupts spindle and absence seizure activity (Kim et al.,
2001; Astori et al., 2011), suggesting that this current is critical
for producing synchronized oscillations in the thalamus. For
IH, after being activated by hyperpolarization, the return to
baseline voltage is associated with delayed closure of HCN
channels, leading to rebound depolarization (Pape, 1996; Slater
et al., 2013). The combined effect of these two currents is
typically a low-threshold slow rebound depolarization with
a superimposed burst of traditional sodium action potentials
(Lüthi and McCormick, 1998). In the context of a network
containing TC, RE, and CX cells, this post-inhibitory rebound
can be triggered after TRN-based GABAergic inhibition in TC
cells, producing a TC burst, which would produce excitation in
a RE cell. Such a cycle may be initiated by cortical activation
of the thalamic reticular nucleus, and can generate oscillations
associated with sleep spindles (Steriade, 2005) as well as
paroxysmal activity (Meeren et al., 2002; Polack et al., 2007).

What is still unclear is the nature of the state transitions
between sleep and wakefulness that are characterized by marked
difference in thalamocortical oscillatory behavior. Slow-wave
sleep is characterized rhythmic, delta-range bursting in TC
cells (Amzica and Steriade, 1998), while the waking state is
dominated by irregular isolated action potentials and occasional
bursts (Ramcharan et al., 2000; Bezdudnaya et al., 2006).
Previous work in relatively simple models has suggested
that TC cells near the onset of rhythmic bursting show
chaotic behavior (Wang, 1994; Paul et al., 1998); a type of
dynamical interaction which may facilitate the rapid transition
between discrete states in neural systems (van Vreeswijk and
Sompolinsky, 1996). Therefore, the objective of the present
study was to characterize state transitions using tools of
nonlinear dynamics in a reduced but biologically realistic
model of the thalamo-reticulo-cortical circuit that maintains
the essential intrinsic conductances in these nuclei and their
synaptic connectivity. We assume here that transitions from
slow oscillatory behavior seen in model TC neurons to rapid,
irregular firing corresponds to a transition between sleep and
wakefulness.

The traditional linear spike train analyses treat variability
in a biological system as noise and average out this factor.
This approach does not take into account that this variability
may be an inherent property of an interconnected dynamical
system such as the thalamocortical system. Chaos refers to
deterministic or non-random behavior which exhibits very rapid
growth of errors leading to different system states and thus
renders impossible any long-term prediction. Others have argued
that the irregularity of spike patterns in large networks is an
emergent property of the network that enables it to respond very
rapidly to external input, much faster than the time constant of
individual neurons, and therefore benefits neural processing (van
Vreeswijk and Sompolinsky, 1996; Bertschinger and Natschläger,
2004; Canavier and Shepard, 2009; Sussillo and Abbott, 2009).
Previous studies have shown that artificial neuronal networks
and real networks of neurons can demonstrate the presence of
chaotic regimes (Canavier et al., 1990;Wang, 1994; van Vreeswijk
and Sompolinsky, 1996; Siegel and Read, 2001; Bertschinger and
Natschläger, 2004; Battaglia et al., 2007; Sussillo and Abbott,
2009; Rajan et al., 2010; Jia et al., 2012). Other studies have
demonstrated fractalness in spike trains (Teich, 1989; Teich
et al., 1997; Darbin et al., 2006; Gebber et al., 2006). These
studies suggest that chaotic dynamics exist in a large number of
simulated and real neural systems.

In the present study, we have constructed a reduced 3
neuron thalamo-reticulo-cortical model consisting of one CX
corticothalamic neuron, one TC neuron and one RE neuron
with intrinsic conductances, based in part on our intracellular
recordings, and biologically realistic synaptic connectivity
between them. The model is a direct implementation of
the circuitry that has been hypothesized to be essential
for thalamocortical oscillatory behavior (Steriade et al.,
1993a,b; Steriade, 2005; Contreras, 2014; see Figure 1). The
implementation of post-inhibitory rebound and associated
low-threshold Ca2+ conductance was based on in vitro data
from cortical slices and then fit to the model to obtain realistic
rebound excitation in an infragranular CX neuron. In the
interconnected model, we demonstrated periodic oscillatory
and irregular aperiodic spike burst patterns depending on the
strength of synaptic connectivity.

Finally, we demonstrate that within a range of synaptic
conductance values representing putative physiological
transition states, chaotic behavior in the network model is
obtained.

METHODS

Electrophysiology
All procedures were performed under the guidelines of the
National Institutes of Health and approved by the Institutional
Animal Care and Use Committee. Adult male rats (100–250)
g were anesthetized with sodium pentobarbital and decapitated
and the brain quickly removed and put in ice-cold artificial
cerebrospinal fluid (ACSF) bubbled with 95% O2—5% CO2.
The composition of ACSF was in mM NaCl (126), KCl
(3), MgSO4 (1), NaH2PO4 (1.25), NaHCO2 (26), Glucose
(10), and CaCl2 (2). Coronal slices (400µm) were prepared
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FIGURE 1 | (A) Basic thalamo-cortical circuit consists of reciprocal excitatory

connections between TC and CX neurons with collaterals to RE. RE neurons

have inhibitory projections to TC (reprinted with permission, Steriade et al.,

1993a). (B) Thalamo-Reticulo-Cortical network model developed for

simulations in the current study. This computational model with anatomically

realistic connections is an implementation of the proposed circuitry for the

neural basis of thalamocortical oscillations.

through the primary somatosensory area and placed in an
interface type slice chamber with a continuous flow of ACSF
maintained at a temperature of (37 ± 1)◦C. Somatosensory
cortex was used since oscillatory phenomena that accompany
states of sleep and drowsiness involve large regions of the
brain and are found throughout the brain and because spindle
oscillations that accompany drowsiness and sleep are found
in the somatosensory cortex (Contreras and Steriade, 1995;
Khazipov et al., 2004; Rosanova and Timofeev, 2005; Halassa
et al., 2011). Blind intracellular recordings employed sharp
micropipettes (Brown Flaming Puller; 100–160M�) filled with
1M K-acetate (pH 7.4). Membrane potentials were recorded
with an Axoprobe-1A amplifier. The output was displayed on a
digital storage oscilloscope and stored on a videocassette recorder

via a Neuro-corder (Model DR-890, Neurodata Instruments)
for offline analysis. Analysis was done using custom written
software (Dataman PC, Cauller). Neurons in infragranular
layers V/VI were classified as either non-adapting or adapting
based upon their response to sustained somatic current
injection.

Computational Model
A reduced cortical infragranular pyramidal cell model was
developed in the GENESIS simulation environment (cortical
infragranular cell, CX, in Figure 1). It consisted of four
compartments: tuft, neck, soma and base. The tuft (325µm
length and 1µm diameter) and neck (175 × 1 µm) together
represent the apical dendrite. The neck was attached to
the apical side of the soma (15 × 15 µm) whereas the
base (225 × 2 µm) represented the basal dendrites. The
membrane resistivity (RM), axial resistivity (RA) and membrane
capacitivity (CM) were set at 0.5 �/m2, 1.0 �/m, and 0.017
F/m2, respectively. The model consisted of the following
currents: fast sodium (INa), potassium delayed rectifier (IK_DR),
cortical low-threshold/rebound (ICX_REB), hyperpolarization-
activated cation (IH), potassium after-hyperpolarization (IAHP),
calcium dependent potassium (IK[Ca]), and the potassium A-
current (IA). The channel description for the ICX_REB current
was implemented based on data directly obtained from the
activation and inactivation curves obtained from in vitro
experiments described above. All other channel descriptions
were taken from existing GENESIS user libraries. The maximal
conductance values used were (in S/m2): gK_DR = 200, gCX_REB
= 7, gH= 12.55, gAHP= 2.1, gK[Ca]= 0.28, and gA = 12. To
determine rebound parameters in isolation, the fast Na+ maximal
conductance was set to zero (gNa= 0) to simulate the effect of the
intracellular Na+ blocker QX-314, as was done in physiological
experiments.

The differential equation governing the membrane voltage of
the model was given by

C
dVCX

dt
= −(INa+ IKDR + ICXREB + IH + IAHP + IA+ IK[Ca2+])

Ij = gjm
MhN(VCX − Ej)

Here, C is the capacitance of the membrane, VCX is the
membrane voltage and Ij is the current passing through each
specific channel. gj is the maximal conductance value for each
channel (Bower and Beeman, 1998, Chapters 4 and 6).

m and h represent the instantaneous activation and
inactivation variables. They are raised to the power M and
N, respectively. Ej is the reversal potential of each channel j. The
steady state activation and inactivation variables m∞ and h∞
were either obtained from experimental data or from equations
fitted to experimental data as described above. The instantaneous
values of these gates change with respect to time as

m∞, h∞ =
α

α + β

dm

dt
=

(m∞ −m)

τm
,
dh

dt
=

(h∞ − h)

τh
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Where, τm and τh are the activation and inactivation time
constants, α and β are the forward and backward rate constants,
respectively (Bower and Beeman, 1998).

From first-order kinetics, α and β are of the form

α, β=
A+Bx

C+ e
VCX +D

F

Where, A–F are constants and VCX is the membrane potential of
the cortical neuron.

For Ca2+ dependent processes, α and β are multiplied by a
factor representing the intracellular Ca2+ concentration. Change
in the intracellular Ca2+ concentration is described by

d
[

Ca2+
]

dt
= B.ICa2+ −

[

Ca2+
]

τCa2+

Here, τCa is a factor representing the rate of decay of [Ca2+]. B
is a factor representing the flux of ions in a thin shell near the
membrane surface produced by ICa (Bower and Beeman, 1998,
Chapter 19).

The synaptic conductance change is modeled by the “alpha
function” (Rall, 1967).

gsyn (t) = gmax
t

tp
e(1−t/tp)

Where, gsyn is the instantanteous synaptic conductance value of
either of gGLU or gGABA. At t= tp, the function rises to a maximal
conductance value of gmax for each of the synaptic conductances
and then decreases slowly to zero. The synaptic current is then
given as

Isyn (t) = gsyn (t) (Vm − Esyn)

Where Vm is the membrane potential and Esyn is the synaptic
reversal potential of the synaptic conductance (i.e., EGLU or
EGABA).

For the network model, the simplified 4 compartment model
of an infragranular CX cell was synaptically connected to the
thalamo-reticular (TC-RE) model (Paul et al., 1998). The TC cell
model included IT, IH, INa, IK, and IGABA and the RE model
consisted of ITS, IK[Ca2+], ICAN, INa, IK, and IAMPA to implement
the three neuron network TC-RE-CX model (Figure 1). This
network model is an implementation of the Steriade (Steriade
et al., 1993b,c; Steriade, 2005) hypothesis for the neural basis of
oscillations in the thalamus and the cortex. The TC-RE network
has reciprocal excitatory and inhibitory connections. The TC
cell has excitatory AMPA/Kainate projections to the RE cell
which, in turn, has GABAergic inhibitory projections to the
TC. The CX cell is connected to this network with excitatory
glutamate projections to both TC and to RE. The TC cell has
reciprocal excitatory projections to the neck compartment of CX.
This approximates the thalamocortical excitatory projections at
the proximal apical dendrites (layer IV synapses). The maximal
conductance values for the CX cell was slightly adjusted to obtain
oscillatory behavior in the CX cell in concert with those in the

TC and RE cells. These values are given in Table 1. The network
model was constructed such that RE acted as the initiator or
pacemaker cell, based on findings from lesion experiments in the
cat (Steriade et al., 1987).

Nonlinear Dynamical Analysis
To identify chaotic regimes within the dynamic system four
methods of analyses were used. These are elaborated below:

Phase space analysis: Two time-dependent variables were
plotted against each other over time. Such a plot provides a
graphical picture of the dynamical system being investigated
and differentiates between a fixed point attractor, a limit cycle
and strange attractors. Presence of a strange attractor suggests
the presence of a chaotic regime within the dynamical system.
Bifurcation plots: A bifurcation plot illustrates the transition
from periodic to aperiodic or chaotic states thus plotting the
transition from order to chaos in a dynamical system. These
are usually plotted with a system parameter on the x-axis and
a representation of an attractor on the y-axis. At a bifurcation
point, the attractor in the plot splits into two if the attractor
changes from a period of one to a period of two.
Fractal dimension: Two measures were used to compute the
fractal dimension of neuronal spike train pattern. These are
the Fano Factor and the Allen Factor. Fano Factor refers to
the ratio of the variance in the number of spikes within a time
window T to themean number of spikes within that same time
window. This is given as

F (T) =
Var[N (T)]

〈

N(T)
〉

TABLE 1 | Maximal intrinsic conductance values for each compartment of

the network model.

Cell Compartment Maximal Intrinsic Ionic Conductances (S/m2)

CX_soma gNa = 2000

gK_DR = 200

gCX_REB = 10

gH = 12.55

gAHP = 2.1

gK[Ca2+] = 0.28

gA = 12

CX_neck gCX_REB = 4

TC gNA = 1737

gK_DR = 206.9

gT = 40

gH = 10.55

gLEAK = 3

RE gNa = 1737

gK_DR = 256.9

gTs = 250.61

gCAN = 1.5

gK[Ca2+] = 3.5
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Experimentally, the Fano Factor is calculated by computing
the above metric repeatedly for different time windows (T)
over the range of interest. For a true Poission process, F(T)
is equal to 1. F(T) > 1 imply that the variance in the number
of events grows faster than the mean, suggesting the presence
of long-term correlations in the data and fractal properties
(Teich, 1989; Lowen and Teich, 1996; Koch, 1999). Due to the
nature of computation of the Fano Factor, it cannot increase
faster than∼T1 (Lowen and Teich, 1996). Therefore, a second
measure, the Allan Factor, which has been used to detect self-
similarity with fractal exponents greater than unity (Allan,
1966; Barnes andAllan, 1966), was used here. The Allan Factor
is derived from the Allan variance which is given as the average
variation in the difference of adjacent counts. The Allan Factor
is then the ratio of the Allan variance of the even count to twice
the mean. It is related to the Fano Factor by A(T) = 2F(T)
– F(2T) where, F(T) is the Fano Factor for counting time T
(Scharf et al., 1995). The Allan Factor can rise as fast as ∼T3

and therefore, can be used to estimate fractal exponents in the
range 0–3 (Lowen and Teich, 1996).
Lyapunov exponents: The method for computing Lyapunov
Exponents involved a direct approach which was possible
within a simulation environment. This algorithm is
graphically shown in Figure 2. Two identical networks
of the TC-RE-CX reciprocally connected model were created
and were run for a period of 15 s simulation time to eliminate
transients. An iteration time step (dt) of 10µs was used.
After 15 s of simulation run time, a perturbation of 0.005mV
introduced into the copy of the original system. The two
parallel simulations were now run for 5 time steps to allow the
initial perturbation introduced into the membrane voltage
to filter through to all other parameters. The error E0 was
measured at this time and the simulations were run for an
evolve time of 0.1 s during which the introduced “error” was
allowed to amplify (Ek). The parameter of interest was the
somatic membrane potential which was recorded from both
the original system and the perturbed copy and the log of the
absolute difference (“error”) was computed. All parameters of

the perturbed system were reset to the values of the original
system and this procedure was repeated for 1000 iterations.
The average rate of divergence or convergence (i.e., Lyapunov
exponent) was then computed using the formula:

λ ∼=
1

n

n
∑

k= 1

log

∣

∣

∣

∣

Ek

E0

∣

∣

∣

∣

This procedure of perturb, run, collect data, reset and perturb
again prevented the errors from becoming unbounded,
therefore enabling the algorithm to detect any local “stretches”
while avoiding the global “fold” (Paul et al., 1998).

For all methods (except Lyapunov Exponents), the analysis was
done over 20 s of data after removal of the first 5 s in order
to avoid the initial transients. The characterization of network
activity as periodic or aperiodic was based on the spike pattern of
the CX cell. The two parameters that were systematically varied
while computing the Lyapunov exponent were the strength
of TC→CX synaptic excitation and the strength of RE→TC
synaptic inhibition.

Two representative data sets are used for detailed analysis
for each of the methods to distinguish between periodic state
(as observed during sleep) and chaotic state (transition state).
Additionally, the bifurcation plot and Lyapunov exponents were
computed for a range of data points that demonstrate a transition
from one mode to the other. Physiologically, transition from
sleep to wakefulness was simulated by decreasing a potassium
leak conductance (gLEAK) to the TC and RE cells from its initial
setting. This approach has been used previously in thalamic
(Bazhenov et al., 2002; Willis et al., 2015) and cortical (Hill and
Tononi, 2005) models, and simulates excitatory brainstem input
(e.g., cholinergic) that accompanies the transition between these
behavioral states and modulates the resting membrane potential
of these cells. Lyapunov Exponents were computed for a range of
gLEAK values.

FIGURE 2 | Algorithm for computing Lyapunov Exponents. Two identical networks of the TC-RE-CX reciprocally connected model were created and an error

was introduced in the membrane potential of the copy system and allowed to amplify for a period of time (0.1 s) after which the difference between the original system

and the copy system was measured and all parameters of the copy system was reset to the values of the original system. The average rate of divergence or

convergence was then computed using the formula shown in the figure.
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RESULTS

In vitro Determination of Cortical Neuron
Post-inhibitory Rebound Parameters
We examined PIR properties mediated by low threshold Ca2+

conductance (IT) in real infragranular cortical neurons in brain
slices. These neurons are hypothesized to contribute to the
dynamic behavior of cortico-thalamic networks and PIR plays a
critical role in network oscillations. The rebound depolarization
properties obtained from in vitro experiments provide the
activation and inactivation variables for the implementation of IT
conductance in infragranular cortical neurons. PIR is mediated
by a low threshold calcium conductance or low threshold
calcium spike (LTS). The mean resting membrane potential of
the rebound cells was −65.56 ± 4.27mV. In the presence of
intracellular blocker QX-314 (50mM), the mean LTS amplitude
13.57 ± 4.05mV, and the LTS width was 67.6 ± 21.55ms.
Figures 3Ai,ii demonstrates typical voltage responses to current
stimuli in a neuron for each of the protocols used to obtain
low-threshold conductance properties, namely, the activation
parameter (m), and the inactivation parameter (h). The Ca2+

dependence of the post-inhibitory rebound is shown by block
and recovery with Co2+ (Figure 3Aiii). The current stimulus
protocols used for obtaining the voltage responses for activation
and inactivation parameters are shown in Figures 3Bi,Bii,
respectively.

Figure 4 shows the activation, inactivation, and deinactivation
variables based on the in vitro data. The activation curve
(Figure 4A) was obtained by normalizing the low-threshold
spike (LTS) amplitude for each depolarizing current stimulus to
the maximal LTS amplitude of that cell. The initial activation of
LTS occurred at −76mV and complete activation at −42mV
with the greatest variability between neurons occurring in the
linear range between −55 and −45mV. The inactivation curve
(Figure 4B) was obtained by normalizing the rebound potential
at the end of each hyperpolarizing current prepulse to the
maximum rebound potential for a neuron generated by the
most hyperpolarized prepulse. The time course for deinactivation
curve (Figure 4C) was obtained by eliciting hyperpolarizing
pulses of constant amplitude from a holding potential of−40mV
and varying the width of the hyperpolarizing prepulse. The
amplitude of the rebound potential was normalized to the
maximum amplitude for that cell and plotted as a function of
hyperpolarization time. The activation and inactivation curves
for the rebound conductance obtained from the experimental
data were reduced to 30 data points by a fit to the nearest
5mV value in the range −90 to −40mV. These data were
used to interpolate a table of 3000 voltage states across
that range to obtain the smoothed and fitted activation and
inactivation curves (Figure 4D) to be used in the cortical neuron
model.

Matching In vitro Data to Single Neuron
Model
Details of the reduced infragranular pyramidal cell model
have been described in the Methods Section (also see cortical
component CX in Figure 1). The model consisted of the

FIGURE 3 | Voltage responses to current stimulus protocols. (A) Typical

voltage responses to current stimulus for (i) activation and (ii) inactivation of

the low-threshold conductance. Blockade of PIR response by Co2+ (iii),

demonstrates the Ca2+ dependence of the PIR response. (B) (i) Experimental

protocol for determination of the activation parameter consisted of 500ms

step pulses of increasing current amplitude. The holding current was adjusted

such that the membrane potential was at −80mV at the start of the step

pulse. (ii) Protocol for determination of the inactivation parameter consisted of

hyperpolarizing current steps of increasing amplitude and of 500ms duration.

The holding current at the start of the step pulses is adjusted such that the

membrane potential is at −45mV.

following currents: fast sodium (INa), potassium delayed
rectifier (IK_DR), cortical low-threshold/rebound (ICX_REB),
hyperpolarization-activated cation (IH), potassium after-
hyperpolarization (IAHP), calcium dependent potassium (IK[Ca]),
and the potassium A-current (IA). The channel description for
the ICX_REB current was based on in vitro data directly obtained
from the activation and inactivation curves (Figure 4D).
The experimentally determined activation and inactivation
curves (Figures 4A,B) were reduced to 30 data points by
“eyeball” fit to nearest 5mV value from −90 to +5mV. In
our experimental dataset, this ranged from −80 to −40mV
and all values outside this range were set to 0 or 1. The
GENESIS function tweaktau was then used to extrapolate the
data to 3000 data points within the range −80 to −40mV to
obtain a smooth curve. The function scaletabchan was used
to left shift the curves by −6mV to give a more accurate
depiction of channel properties and obtain realistic LTS and PIR
responses.

An extensive parameter search was performed to obtain
physiologically realistic responses to current stimulus protocols
to demonstrate post-inhibitory rebound in the model. We found
it was necessary to left shift the curves in the model by 6mV
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FIGURE 4 | (A) Activation curve of the low-threshold conductance in cortical layer V neurons (n = 30). (B) Inactivation curve. (C) Time course of deinactivation.

Standard error is indicated for each data point. (D) Smoothed and fitted activation and inactivation curves of the low-threshold conductance used in the reduced

4-compartment model of a cortical layer V cell. The activation and inactivation curves obtained from experimental data was reduced to 30 data points by fitting to the

nearest 5mV value and then interpolated to 3000 points. The original curves have been left shifted by –6mV in the model.

(i.e., in a more hyperpolarized direction) to generate rebound
that matched experimentally observed results. Figure 4D shows
the final smoothed and shifted activation and inactivation curves
for the ICX_REB conductance implemented in the model. The
maximal conductance values used were (in S/m2): gK_DR = 200,
gCX_REB = 7, gH = 12.55, gAHP = 2.1, gK[Ca] = 0.28, and
gA = 12. To determine rebound parameters in isolation, the fast
Na+ maximal conductance was set to zero (gNa = 0) to simulate
the effect of the intracellular Na+ blocker QX-314.

Figure 5 shows the simulated LTS and post-inhibitory
rebound in the reduced 4-compartment cortical neuron model.
With the membrane potential set at −80mV and gNa = 0 (to
simulate the action of QX-314), incremental LTS spikes and
rebound potentials are observed with increasing depolarizing
and hyperpolarizing current pulses, respectively (Figures 5A,B).
The near all-or-nothing nature of the LTS evoked by stimuli
between 0.7 and 0.8 nA reflects the steep slope of the activation
curve. In these simulations, the maximum width of the LTS
at its base was 70ms which is close to the average value
observed in the experimental data (67.5ms). The maximum
amplitude of the simulated LTS was 15mV, near the average
experimental value of 13.7mV. The maximum rebound potential
followed a hyperpolarizing current pulse current pulse of
−0.7 nA which was well within the physiological range. The

rebound width was 110ms which exceeded the mean but
was in the range of experimentally observed values. The
amplitude of the rebound spike was close the mean observed
value (Figure 5B). Figure 5C shows the increasing amplitude
of rebound response to a constant hyperpolarizing current
pulse of −0.8 nA with the maximal low-threshold conductance
gCX_REB varied from 0 to 7 S/m2. This finding shows that the
post-inhibitory rebound response in the cortical cell model
arises primarily as a result of the low-threshold conductance
implemented from experimentally observed activation and
inactivation data.

Network Model
Details of the network model are outlined in the Methods
Section. Figure 6A shows the development of oscillations in
the interconnected network simulation (see Figure 1). For this
simulation, the synaptic parameters were adjusted to keep the
CX and TC cells quiescent while RE was bursting intrinsically at
2.5Hz (Figures 6Ai–iii). In the first second of simulation time,
there are two bursts in the RE neuron whereas the TC and
CX neurons show no spiking. This initial condition is based
on the theory that a few RE or TC cells may be subgrouped
as initiator cells that may start oscillating intrinsically and then
gradually recruit other RE and TC cells as well as in vivo
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FIGURE 5 | Simulations of low-threshold spike (LTS) and

post-inhibitory rebound (PIR) in cortical layer V cells. (A) Simulated LTS

response for increasing depolarizing 500ms step pulses (left panel). Close up

view of the LTS is seen on the right panel showing realistic responses

compared to experimental data. The resting membrane potential was set at

−80mV and gNa = 0 S/m2 to simulate action of QX-314 and block action

potentials. (B) Simulated PIR response to increasing hyperpolarizing step

pulses of 500ms. Close up view of the PIR is seen on the right panel showing

realistic PIR responses compared to experimental data. The resting membrane

potential was set at −80mV and gNa = 0 S/m2 to simulate action of QX-314

and block action potentials. (C) Relationship between the low-threshold

conductance channel (gCX_REB) implemented from experimental data and the

post-inhibitory rebound response observed in the cortical cell model. The

maximal value of gCX_REB is varied from 0 to 7S/m2. Close-up view of PIR

response and its dependence to the low-threshold channel conductance

(gCX_REB) is seen on the right panel. Figures on the right for (A–C) are drawn

to different scale to highlight LTS and rebound response.

and computational data that show oscillations to be present
in isolated RE nuclei (Steriade et al., 1987; Destexhe et al.,
1994; Fuentealba et al., 2004). To simulate the RE initiator
condition, the synaptic connectivity was removed between RE
and TC cells for the initial 1 s period. Addition of inhibitory
synaptic connectivity (RE→TC, gGABA = 1 S/m2), produced
hyperpolarization in the TC neuron leading to post-inhibitory
rebound potential in the TC neuron along with burst spike
activity. Burst spiking in the TC neuron also led to reciprocal
excitatory EPSPs in the RE neuron and feed forward EPSPs in
the CX neuron and the entire circuit oscillated at 6.5Hz, which
is in the lower range of spindle oscillations. Therefore, the RE
initiator neurons entrained the entire TC-RE-CX circuit into
the spindle oscillations frequency range. We also found that the

low threshold conductance in the CX cell was essential for its
rhythmic burst firing since setting gCX_REB = 0 abolishes bursting
activity in the CX neuron, though subthreshold oscillations
remain (Figure 6B).

We also examined the effect of cortical feedback and resting
thalamic leak conductances on the oscillation frequency. Across
the range of excitatory corticothalamic synaptic conductances,
the oscillation frequency reduced from 6.4 to 5.2Hz for feedback
ranging from 0 to 2 S/m2 (Figure 6C). For the simulations in
Figures 6A,B, gFEEDBACK was set at 0.4 S/m2. Figure 6D shows
the effect of varying the TC resting potassium conductance value,
gLEAK, on oscillation frequency. At the initial value of 11 nS, the
frequency of oscillation was at the lower end of the spindle range
of 6Hz. Increasing the gLEAK caused a decrease in the frequency,
whereas decreasing gLEAK caused an increase in the frequency.
The range of frequencies was from 6.8Hz at a gLEAK value of 0
nS −4.8Hz at a gLEAK value 20 nS. Therefore, there is an inverse
relationship between this passive potassium conductance value
and the frequency of oscillation. Altering the gLEAK conductance
represents changes in the resting membrane potential of TC
neurons that may arise from excitatory brainstem inputs during
different physiological states (Bazhenov et al., 2002; Willis et al.,
2015).

Dynamical Analysis
Phase Plots

In a computational model, phase plots or phase portraits provide
a way to plot multiple dynamic variables that vary with time
(e.g., activation and inactivation gates of conductances, Ca2+

concentration, etc.) as a function of each other at the same
time during continuously evolving neuronal behavior. These
plots provide us with information about the dynamics of
these variables that ultimately determine the evolution of the
membrane potential.

Figure 7 shows two representative data sets for 15 s of
simulated data in the putative chaotic condition and in the
periodic condition for the CX neuron. The periodic oscillations
at 6–7Hz were obtained by setting TC→CX synaptic excitation
to 2.0 S/m2 and RE→TC, and synaptic inhibition to 1.0 S/m2

(Figure 7A). The irregular aperiodic bursts observed in the
putative transition region were obtained by setting TC→CX
synaptic excitation: 1.4 S/m2 and RE→TC synaptic inhibition:
0.08 S/m2 (Figure 7B). To discern the underlying mechanisms
between the two states, we constructed four phase plots
for each of the periodic and putative chaotic conditions
focusing on the Ca2+ concentration and the calcium channel
activation/inactivation dynamics. These include (i) Internal Ca2+

concentration [Ca2+] of CX vs. low-threshold conductance
(gCX_REB) activation variable (m) of CX, (ii) Internal Ca2+

concentration [Ca2+] of CX vs. low-threshold conductance
(gCX_REB) inactivation variable (h) of CX, (iii) Internal Ca2+

concentration [Ca2+] of TC vs. Internal Ca2+ concentration
[Ca2+] of CX, and (iv) low-threshold conductance (gT)
inactivation variable (h) of TC vs. low-threshold conductance
(gCX_REB) inactivation variable (h) of CX. All of the phase plots
in Figures 8Ai–iv are similar to each other because they all
exhibit a strict period two limit cycle and represent a rhythmically
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FIGURE 6 | (A) Development of rhythmically bursting oscillations from an initial condition. (Ai,Aii,Aiii) show the activity from CX, TC, and RE cell, respectively. The RE

cell (Aiii) acts as the “initiator” cell oscillating at 2–3Hz initially and subsequently entrains the entire network to oscillate at 6–7Hz. (B) With gCX_REB = 0, CX cell (Bi)

is not entrained into the bursting oscillatory network activity. Tonic single spikes occurred riding on top of summated EPSPs arriving from the TC cell onto the neck of

the CX cell. TC (Bii) and RE (Biii) cells oscillate at 3Hz frequency. (C) Increasing the strength of cortical feedback conductance to TC and RE causes a decrease in

the frequency of oscillations. (D) Increase in the leak conductance value also causes decrease in oscillation frequency.

oscillating state, similar to what is observed in sleep. The same
variables are plotted against each other in Figures 8Bi–iv in the
putative chaotic state corresponding to the spike burst pattern
observed in Figure 7B. In contrast to Figure 8A, these plots
show a rich banded structure and overlapping trajectories which
characterize the presence of strange attractors within a chaotic
regime.

Bifurcation Plot

Whereas, phase plots reveal information about the underlying
dynamics by plotting variables against each other, bifurcation
plots show the possible transition from periodic to aperiodic
or chaotic states. Figure 9 shows the bifurcation plot of
the instantaneous frequency of spikes (1/ISI) in Hz vs. the
TC→CX excitatory synaptic conductance with RE→TC synaptic
inhibition set at 0.08 S/m2. At low TC→CX values a single period
is observed. The spread of points in the lower range increases
(0.7–1.2 S/m2) until at 1.4 and 1.6 S/m2 where an apparent

period-three limit occurs (indicated by arrow). This implies the
presence of a chaotic regime (Li and Yorke, 1975; Canavier et al.,
1990). Data points between TC→CX values of 1.4 and 2.2 S/m2

occupy a spectrum of values in both frequency ranges with no
points in the middle region between 4 and 5.5Hz. We have also
shown the abscissa point TC→CX = 2.2 S/m2 with RE→TC
synaptic inhibition increased to 1.0 S/m2 which is the periodic
oscillatory bursting regime (see Figure 7A). At this point the
lower range of frequencies abruptly disappears and only the
higher frequency points remain with some spread in this range.
Thus, the bifurcation plot demonstrates the route to chaos and
back to periodicity.

Fano and Allan Factor

Fano factor and Allan Factor were computed for the chaotic and
periodic conditions and plotted on a log-log scale (Figure 10).
Both measures show power law growth between 100 and 101

for longer counting times which indicate fractal nature of burst
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FIGURE 7 | (A) Representative data set for the full bursting oscillations at 6–7Hz in CX neuron. The periodic oscillations at 6–7Hz were obtained by setting TC→CX

synaptic excitation to 2.0 S/m2 and RE→TC, and synaptic inhibition to 1.0 S/m2. (B) The occurrence of bursts in the CX neuron visually appears irregular aperiodic in

the transition region. The synaptic connections were set at TC→CX synaptic excitation: 1.4 S/m2 and RE→TC synaptic inhibition: 0.08S/m2.

occurrences (Lowen and Teich, 1996). The fractal dimensions
estimated from the slope of these plots were 1.16 for the Fano
Factor (solid squares) and 2.31 for the Allan Factor (open circles).
For the periodic condition, at longer counting times in the same
range, the burst pattern shows negative slope.

Lyapunov Exponents

We calculated the Lyapunov exponents for the two data sets
shown in Figure 7. With the variable measured being the
membrane potential of the CX neuron, the data set representing
the transition region the Lyapunov exponent value was computed
to be +0.24 for 1000 iterations, which, being a value greater
than zero, indicates a chaotic regime (Abarbanel et al., 1993).
In contrast, in the periodic condition, a negative Lyapunov
exponent value of−0.05 was obtained.

Given the importance of RE→TC inhibition in generating
post-inhibitory rebound and oscillatory states, we further
characterized LE as a function of RE→TC synaptic inhibition
(Figure 11A). With the CX membrane potential once again as
the variable of interest, positive Lyapunov exponent values are
obtained for RE→TC inhibition 0.02 S/m2 to just below 1.0 S/m2.
At≥1.0 S/m2 the Lyapunov exponents abruptly become negative
indicating a transition to non-chaotic regime. Therefore, the
cortical membrane potential demonstrates sensitivity to initial
conditions between 0.02 and 1.0 S/m2, which is a hallmark of a

chaotic system. Given the importance of the strength of CX→TC
feedback on oscillation frequency (Figure 6C), we also examined
Lyapunov exponents at varying CX→TC excitatory feedback
synaptic strength while keeping other synaptic connectivity
strengths constant (RE→TC= 0.08 S/m2; TC→CX= 1.4 S/m2).
Varying CX→TC synaptic strength from 0.05 to 1 S/m2 produces
Lyapunov exponents in the range 0.2–0.6 (Figure 11B). However,
removal of the cortical feedback loop (CX→TC = 0.0 S/m2)
produces a larger Lyapunov exponent of 1.4 (not shown in
semilog scale in Figure 11B). In our previous simulations with
only an interconnected TC and RE neurons, positive Lyapunov
exponents were obtained in the range of 1–2 (Figure 5 in Paul
et al., 1998). There is a wide spectrum of Lyapunov Exponent
magnitudes reported in neural simulations with positive values
in the range of 10−4 to show chaotic behavior in a single neuron
model of R15 bursting cell of Aplysia (Canavier et al., 1990).

Figure 11C shows the Lyapunov exponents for the CX cell as a
function of the potassium leak conductance (K_leak). Decreasing
the leak conductance from its initial value simulates the effect of
excitatory brainstem neuromodulatory input that accompanies
the transition from sleep to wakefulness. The other control
parameters are set at TC→CX = 1.4 S/m2 and RE→TC = 1.0
S/m2. With these settings, the LE value at initial gLEAK of 11.25
nS is −0.05—only just negative. For lower gLEAK, Lyapunov
exponents were positive (except at gLEAK = 2.25 nS), suggesting
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FIGURE 8 | (A) Phase Plots for various parameters representing low-threshold

conductance dynamics and Ca2+ concentration in CX and TC cell of network

simulation. All phase plots exhibit a 2 period limit cycle. “Control” parameter

settings are TC→CX synaptic excitation: 2.0 S/m2 and RE→TC synaptic

inhibition: 1.0 S/m2. Computed Lyapunov Exponent is −0.05. (B) With

TC→CX synaptic excitation: 1.6 S/m2 and RE → TC synaptic inhibition: 0.08

S/m2, phase plot analysis shows strange attractor dynamics for the same

parameters as in (A). Lyapunov Exponent is +0.24 and fractal dimension

estimate from the Allan Factor time curve is 2.3.

that brainstem modulators, which modulate the state of arousal
(Williams et al., 1994; Jones, 2003), may produce a transition
from periodic to chaotic dynamics.

DISCUSSION

Summary
A minimal network model consisting of one TC cell, one
RE cell, and one CX cell was developed based in part on
realistic biophysical parameters as well as measured values from
physiological experiments. These cells were interconnected with
realistic anatomical projections and implemented as previously
hypothesized circuit for the neural basis of thalamocortical

FIGURE 9 | Bifurcation plot of CX cell in network model in transition

region. RE→TC synaptic inhibition is set at 0.08S/m2. Frequency of burst

occurrences are plotted vs. increasing TC→CX synaptic excitation. Bursts are

defined as groups of spikes with interspike intervals of less than 10ms. On the

x-axis, the point 2.2 represents a TC→CX synaptic excitation of 2.2 S/m2 and

RE →TC synaptic inhibition of 0.08S/m2 as well as TC→CX: 2.2 S/m2 and

RE →TC: 1.0 S/m2 as distinct points on the x-scale.. The latter represents the

fully periodic oscillation state. Generation of apparent period-three cycle is

indicated in the route to chaos.

oscillations (Steriade et al., 1993a,b; Steriade, 2005; Contreras,
2014). The network model was constructed such that the RE
cell acted as an initiator cell and subsequently entrained the
TC and CX cells into a bursting rhythm. We observed that
chaotic dynamics were present between thalamocortical states
that accompany the physiological transition from wakefulness to
drowsiness. The presence of chaos was dependent on a number
of physiological parameters, such as the resting leak conductance
of TC neurons, and the strength of thalamocortical transmission.
These data add to the growing body of literature suggesting
that chaotic dynamics are present in real and simulated neural
systems (Canavier et al., 1990; Wang, 1994; van Vreeswijk and
Sompolinsky, 1996; Siegel and Read, 2001; Bertschinger and
Natschläger, 2004; Battaglia et al., 2007; Sussillo andAbbott, 2009;
Rajan et al., 2010; Jia et al., 2012) and suggest that the transition
between sleep and wakefulness may be characterized by chaotic
dynamics. The limitations and implications of this study are
discussed below.

Nonlinear Dynamical Analysis
The present study examined the region between the full scale
oscillation observed during sleep and drowsiness and the
transition region characterized by irregular burst occurrences.
Simulation runs with phase plots of various parameters
representing the low-threshold conductance dynamics revealed
the presence of strange attractors in the transition region, in
contrast to a two-period limit cycle observed in the periodic
condition. Previous studies have shown the presence of strange
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FIGURE 10 | (A) Fano Factor (solid squares) and Allan Factor (open circles)

time curve for data set in periodic condition. For longer counting times in the

same range, the burst pattern has negative exponent values that indicate

periodic behavior. Corresponding Lyapunov Exponent is −0.05. (B) Fano

factor time curve for CX cell in transition region (solid data points). Power law

growth for longer counting times indicate fractal nature of burst pattern. Allan

Factor time curve is shown by line connecting open data points. The fractal

dimension obtained from the slope of the Allan Factor curve was 2.3.

Lyapunov Exponent is +0.24.

attractors in the transition region between beating and bursting
modes in simple models that incorporate a single isolated
neuron with biologically realistic conductances and a variable
externally applied current that determines the state of the neuron
(Plant and Kim, 1976; Canavier et al., 1990; Wang, 1994; van
Vreeswijk and Sompolinsky, 1996; Carelli et al., 2005). Other
studies have similarly shown the presence of a chaotic region
in a pair of coupled oscillators (Paul et al., 1998; Iqbal et al.,
2014). Paul et al. (1998) demonstrated a novel method of
calculating Lyapunov Exponents which was possible within the

GENESIS environment. We have now extended those findings
to a more complex and anatomically realistic circuit with the
addition of a cortical component and used multiple lines of
analysis that converge on the finding that a chaotic regime
occurs during the transition between wakefulness and sleep.
In this study, we have taken a proposed hypothesized circuit
for thalamocortical oscillations, experimentally determined the
activation, and inactivation parameters of the critical post-
inhibitory rebound conductance in the cortical component of
the network model and then demonstrated the presence of a
chaotic regime in the cortical neuron whose network dynamics
are solely under the control of network synaptic input to CX
neuron or output from CX neuron. The major synaptic strength
being varied is the RE→TC inhibition. Therefore, with no
direct externally applied current, we show that the CX neuron
dynamics demonstrate the presence of strange attractors and
a chaotic regime. Therefore, the thalamo-reticulo-cortical loop
with its closed organization and architecture and multiple time
scales, isolated from sensory inputs, may also generate chaotic
complexity (Cauller, 2003). The physiological significance of this
is elaborated further in the discussion of nonlinear dynamics in
sensory processing.

In the bifurcation plot we show a route to chaos and back to
period-one regime with an apparent period-three stable regime at
TC→CX excitation strength of 1.4 and 1.6 S/m2. The wide spread
of points show multiple limit cycles within the putative chaotic
regime and is clearly different from what is observed at very low
TC→CX excitatory synaptic strength as well as when RE→TC
inhibition is increased to 1.0 S/m2. Although the period-three
orbit is somewhat arbitrary in our simulations, the wide spread
of points within the transition region tend to fall into two distinct
clumps andmay be described as a bifurcation between dynamical
states (Ciszak and Bellesi, 2011).

Presence of a period-three regime is known to be a hallmark
of the transition to chaos (Canavier et al., 1990). Both the Fano
Factor and the Allan Factor demonstrate a power law growth
for longer counting times in the range 0–1 and indicate that the
irregular burst pattern observed in the transition region is fractal
in nature.

Finally, simulation runs were carried out to estimate the
Lyapunov Exponent of the dynamical system. The Lyapunov
Exponent measures the sensitivity of the dynamical system
to just slightly different initial conditions. Positive Lyapunov
exponents is considered to be the quintessential indicator of a
chaotic regime (Abarbanel et al., 1993). Simulation runs in the
representative transition region produced a positive Lyapunov
exponent. In the periodic case, the Lyapunov Exponent was
negative. All of these findings strongly indicate a chaotic regime
in the transition region of network activity. These findings are
consistent with a body of literature suggesting that sleep-wake
transitions may be characterized by power law dynamics and
as a bifurcation between different states (Lo et al., 2004; Chu-
Shore et al., 2010; Ciszak and Bellesi, 2011), though this has
not yet been measured using tools that provide resolution at
the level of synaptic currents. In addition, it is well known that
paroxysmal states such as seizures are more prone to occur
during the sleep-wake transition (Da Silva et al., 1984; Coenen

Frontiers in Computational Neuroscience | www.frontiersin.org 12 September 2016 | Volume 10 | Article 91

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive


Paul et al. Chaotic Region in Thalamocortical Circuit Model

FIGURE 11 | (A) Positive Lyapunov exponents are obtained for RE→TC inhibition 0.02 S/m2 to just below 1.0S/m2. At 1.0 S/m2 and beyond the exponents abruptly

become negative indicating a non-chaotic regime in this range. (B) Varying cortical feedback excitatory synaptic strength (CX→ TC: 0.05–1S/m2) produces LE values

in the range 0.2–0.6. Removal of the cortical feedback loop (CX→TC = 0.0 S/m2) produces a larger LE of 1.4 (not shown in semilog scale). (C) Lyapunov Exponents

as a function of a potassium leak conductance simulating excitatory brainstem neuromodulation of the thalamus. Decreasing gLEAK simulates transition conditions

from sleep to wakefulness and the system enters a chaotic regime.

et al., 1991). These data suggest that the presence of strange
attractors at the transition state allows rapid global transitions
from one state to another (e.g., from wakefulness to sleep), but
may also lead to rapid transitions to pathological states (e.g.,
seizures). Lo et al. (2004) noted power-law “fractal-like” behavior
in sleep-wake transitions inmice and rats and have suggested that
the transitions between sleep and wakefulness were not random
fluctuations but related to underlying neural mechanisms of sleep
control. The development of neural models for wakefulness-sleep
transitions would be helpful for the understanding and regulation
of sleep and wakefulness.

Limitations of Current Study
The network model employed in the present study was minimal,
in the sense that it consisted of one TC, one RE, and one CX
cell, each with simplified morphologies, an approach based on
the assumption that the behavior of large networks of neurons
can be explained by the behavior of smaller networks of neurons.
Clearly other elements could potentially influence the behavior
of the model, such as dendritic calcium currents (Crandall et al.,
2010), modifications of the calcium dynamics in RE and TC cells
to reflect their physiological differences (Talley et al., 1999), or
the addition of more cells to introduce potential cross-channel
effects, due to either dendro-dendritic synapses, gap junctions, or
nonreciprocal interactions between TC and RE cells (Deschênes
et al., 1985; Pinault and Deschênes, 1998; Crabtree and Isaac,
2002; Landisman et al., 2002). Furthermore, in our model we
do not distinguish between the diffuse matrix thalamocortical
pathway projecting to the superficial layers of CX and the
spatially selective core pathway which project to the granular
layer (Piantoni et al., 2016). It is likely that such modifications
would alter the quantitative behavior of the model, though it
is not yet known if they would alter it qualitatively (i.e., would
alter whether chaotic behavior would be observed). Despite these
simplifications, we note that simple models have been used
successfully to gain insights into network behavior (Grillner et al.,
1988; Destexhe et al., 1993; Ching et al., 2010) though the ability
of the current model to scale up to populations of neurons is

yet unknown. Thus, a future version of this model could include
multiple instances of each type of cell which may increase the
validity of the model and provide opportunities to examine the
impact(s) of the modifications described above.

Experimental Predictions Made by the
Model
The results from the current study predict that spike trains in
cortical and thalamic neurons should reflect chaotic dynamics
during the transitions from the sleeping to the waking state,
and that non-chaotic dynamics should be seen during sleep
and during waking state. To determine if chaotic dynamics
definitively exist in real spike trains would involve computation
of Lyapunov exponents from time series data from an in vivo
preparation, which is extremely difficult (but not impossible)
to compute on real biological neurons. Therefore, the more
feasible approach would be to determine if fractal patterns are
seen in spike trains during the sleep-wake transition. However,
difficult, it may still be possible to determine Lyapunov exponents
from time series data based on reconstructed attractor maps and
determining the long term evolution of vectors defined by points
on separated by at atleast one mean orbital period (Wolf et al.,
1985).

Another prediction made by the model is that corticothalamic
feedback has significant effects on thalamocortical function,
which could be measured. For example, in the current study, the
effect of increasing gFEEDBACK was a lowering of the network
oscillation frequency (Figure 6C). In addition, weakening
cortical feedback (to zero), elevated the Lyapunov exponent
to 1.4, suggesting a greater tendency for chaotic dynamics to
be seen. Strengthening or weakening corticothalamic feedback
could be done using a range of modern genetic tools (Stroh
et al., 2013; Denman and Contreras, 2015), and the effects of
this manipulation can be measured on the firing properties of
thalamic neurons during sleep-wake transitions.

Similarly, in the current study, there is an inverse relationship
between the leak conductance value (gLEAK) and the frequency
of oscillation (Figure 6D). Varying gLEAK on the TC and RE cells
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simulates the effect of neuromodulatory input (e.g., cholinergics)
on the thalamus during transition from sleep to wakefulness.
Excitatory brainstem neuromodulatory input causes a block
of KLEAK channels thus, causing the membrane potential to
become more depolarized (McCormick and Prince, 1987). This
effect is simulated by reduction of gLEAK which results in an
increase of oscillation frequency. Such an effect should be readily
testable using application of cholinergic or other modulators
while measuring thalamocortical oscillation frequency.

Nonlinear Dynamics in Sensory Processing
In this study we have explored the chaotic nature of irregular
aperiodic bursting that occurs in the transition from sleep to
wakefulness. Irregular bursts may also occur during and due
to sensory processing of stimuli in the thalamus and cortex
(Krahe and Gabbiani, 2004; Desbordes et al., 2008), which must
merge with the ongoing thalamocortical activity characterized by
spontaneous tonic activity (Cauller, 2003). We hypothesize that
the coupling of bottom-up sensory input bursts with top-down
feedback may also constitute chaotic regimes with infinite limit
cycles which allow an organism to quickly switch attention or
respond to external inputs. This hypothesis may be tested inmore
detailed large scale neuronal models that incorporate a layered
cortical structure.

Chaotic behavior has been previously obtained in minimal
reciprocal models of neuron pairs with small changes in
connection strength (Jackson et al., 1996; Paul et al., 1998).
In the current study, we have shown that the simulation
of a minimal thalamo-reticulo-cortical loop, isolated from
sensory inputs, also generates chaotic complexity. Therefore,
the thalamo-reticulo-cortical loop with its closed organization
and architecture and multiple time scales, may also generate
chaotic complexity with a system of multiple self-organized
attractors and attractor sequences where each attractor space
or unit refers to a particular spatio-temporal firing pattern
(Cauller, 2003). From a physiological perspective, the cortex
may contain specific instances self-organized attractor spaces
with the rich complexity of chaotic dynamics which contain
an internal model based on the sum of experiences of an
organism. Top-down influences are continuously probed and

tested by bottom up sensory inputs which may modify the
attractor sequence. Even in the development phase a newborn
infant spends much of its time in REM sleep which may
correspond to dynamic self-organization of attractor spaces
with chaotic complexity and is primed for further refinement
as the infant begins to explore the environment (Cauller,
2003).

Conclusions
The current data extend previous work showing that
chaotic dynamics are present in neural spike trains at the
transition points between stable states. Chaotic dynamics
may permit rapid transitions between states—increasing
behavioral and cognitive flexibility, possibly at the cost of
transitions to pathological states, such as seizures. The use
of a computational model permits quantification of certain
values, such as the Lyapunov exponent, which are very difficult

to compute in biological data. Calculation of the Lyapunov
exponent permitted a systematic exploration of the impact
of corticothalamic feedback and thalamic depolarization on
chaotic behavior. This exploration will allow new hypotheses
to be tested about the transition between sleeping and waking
states.
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